变量梯度的分析
1.变量是可以有梯度的;对于变量,如果其require_grad为true,则表示允许该变量有梯度;如果反向传播时损失经过计算图传导到该变量且该变量的require_grad为true,则可以通过(变量.grad)查看该变量的梯度;如果反向传播时损失无法传导到该变量,则改变量.grad为None;对于require_grad为False的变量,反向传播时不会对其计算梯度和更新该参数,该参数的grad一直为None,可以当作常量处理
2.加减乘除赋值等各个操作是让梯度向后传播,
3.变量A的require_grad为True,B的require_grad为False,令out=A+B,则out不是变量,而是操作,其求梯度函数为’add’,反向传播时,A有梯度并更新A的参数,B是常量
在神经网络中,可以利用上述方法查看梯度的反向传播是否正常
detach的用法
参考https://www.cnblogs.com/wanghui-garcia/p/10677071.html
总结:
这么一看其实detach()和detach_()很像,两个的区别就是detach_()是对本身的更改,detach()则是生成了一个新的variable
比如x -> m -> y中如果对m进行detach(),后面如果反悔想还是对原来的计算图进行操作还是可以的
但是如果是进行了detach_(),那么原来的计算图也发生了变化,就不能反悔了