Kafka事务「原理剖析」

一、事务概览

提起事务,我们第一印象可能就是ACID,需要满足原子性、一致性、事务隔离级别等概念,那kafka的事务能做到什么程度呢?我们首先看一下如何使用事务

Producer端代码如下

KafkaProducer<String, String> producer = new KafkaProducer<>(props);
producer.initTransactions();
producer.beginTransaction();

ProducerRecord<String, String> kafkaMsg1 = new ProducerRecord<>(TOPIC1, "msg val");
producer.send(kafkaMsg1);
ProducerRecord<String, String> kafkaMsg2 = new ProducerRecord<>(TOPIC2, "msg val");
producer.send(kafkaMsg2);

producer.commitTransaction();

Consumer端不需要做特殊处理,跟消费普通消息一样

while (true) {
    ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));
    for (ConsumerRecord<String, String> record : records) {
        System.out.println(String.format("Consume partition:%d offset:%d", record.partition(), record.offset()));
    }
}

1.1、事务配置

那需要如何配置呢?

Producer

Consumer

transactional.id

事务ID,类型为String字符串,默认为空,客户端自定义,例如"order_bus"

isolation.level

事务隔离级别,默认为空,开启事务的话,需要将其设置为"read_committed"

enable.idempotence

消息幂等开关,true/false,默认为false,当配置了transactional.id,此项一定要设置为true,否则会抛出客户端配置异常

transaction.timeout.ms

事务超时时间,默认为10秒,最长为15分钟

enable.idempotence设置为true时,kafka会检查如下一些级联配置

配置项

内容要求

说明

acks

要求此配置项必须设置为all

响应必须要设置为all,也就是leader存储消息,并且所有follower也存储了消息后再返回,保证消息的可靠性

retries

> 0

因为幂等特性保证了数据不会重复,在需要强可靠性的前提下,需要用户设置的重试次数 > 0

max.in.flight.requests.per.connection

<= 5

此项配置是表明在producer还未收到broker应答的最大消息批次数量。该值设置的越大,标识可允许的吞吐越高,同时也越容易造成消息乱序

相关配置约束: org.apache.kafka.clients.producer.ProducerConfig#postProcessAndValidateIdempotenceConfigs()

1.2、事务描述

由此,可以出一张事务的概览图

一个简单的事务可能就是这样:

  • Producer开启一个事务
  • 首先向Topic1发送两条消息 msg_a、msg_b
  • 然后向Topic2发送一条消息msg_c
  • 提交事务

假设有2个消费端此时正在消费这两个topic对应的分区,在事务提交前,所有的事务消息对两个consumer均不可见,事务一旦提交,在同一时刻,consumer1可以看到a、b消息,consumer2可看到c消息(这里首先作个申明,显而易见,kafka实现的是分布式事务,既然是分布式事务就脱离不了CAP定理,而kafka的事务也只是做到了最终一致性,后文还会详细展开)

那么整个事务是如何实现的呢?

二、事务流程

如上图所示,整个事务流程分一下几个步骤:

  • 事务初始化 initTransactions
  • 启动事务 beginTransaction
  • 发送消息,一般发送多条,向1个或多个topic producer.send
  • 事务提交 commitTransaction
  • 事务回滚abortTransaction
  • 消费事务消息

当Producer发送N多条事务的话

  • 事务初始化是一次性的
  • 而事务启动、发送消息、事务提交/回滚则会一直循环运行

而这里面很多步骤都是需要多个角色参与的,例如“事务初始化”,就需要Producer及Broker协同实现

三、事务初始化

事务初始化由Producer端触发,代码为

KafkaProducer<String, String> producer = new KafkaProducer<>(props);
producer.initTransactions();

事务初始化经历了两个阶段:

  1. 定位TransactionCoordinator
  2. 初始化ProducerId

两者是递进关系,步骤2是严格依赖步骤1的,下面的流程图标注了它们的调用关系

3.1、定位TransactionCoordinator

参与方:Producer、Broker

什么是TransactionCoordinator?

TransactionCoordinator与GroupCoordinator类似,其本质也是一个后端的broker,只是这个broker起到了针对当前事务的协调作用,所有事务操作都需要直接发送给这个指定的broker

刚开始的时候,Producer并不知道哪个broker是TransactionCoordinator,那么目标broker是如何选择出来的呢?

Producer虽然不知道Coordinator的地址,但是他有所有broker的链接串,因此初始化时,整体步骤如下:

  1. 向任意一个节点发送获取Coordinator的请求,参数中携带客户端自定义的TransactionId;对应ApiKey为 ApiKeys.FIND_COORDINATOR
  2. Broker收到请求后,取TransactionId的hashCode,然后将其对50取模,(注:50为kafka内部topic __transaction_state的默认分区数,该topic是kafka实现事务的关键,后文还会多次提及)获取对应的Partition,该Partition从属的Broker,即为TransactionCoordinator

获取Partition代码如下: kafka.coordinator.transaction.TransactionStateManager#partitionFor()

def partitionFor(transactionalId: String): Int = Utils.abs(transactionalId.hashCode) % transactionTopicPartitionCount

3.2、初始化ProducerId

参与方:Producer、Coordinator

获取TransactionCoordinator后,便需要向其发送请求获取ProducerId及Epoch,对应的API为ApiKeys.INIT_PRODUCER_ID。可以认为ProducerId+Epoch是对事务型Producer的唯一标识,后续向broker发起的请求,也都需要携带这两个关键参数。这两个参数含义如下

参数

类型

含义

ProducerId

Long

从0开始,对应Producer端配置的TransactionId,他们存在映射关系,可以通过TransactionId来查询ProducerId;映射关系存储在kafka内部topic __transaction_state

Epoch

Short

从0开始,Producer每次重启,此项值都会+1;当超过short最大值后,ProducerId+1

比如当前的ProducerId为2000,Epoch为10,Producer重启后,ProducerId为2000不变,Epoch变为11;如果此时Broker端再次收到epoch为10的数据,那么将会认为是过期数据不予处理

由此可见ProducerId与Epoch是持久化在Broker端的,主要目的就是为了应对Coordinator宕机;接下来就要引出非常重要的一个kafka内部compact topic:__transaction_state

__transaction_state 是一个compact topic,即最新key对应的value内容会将旧值覆盖,可以简单将其看做一个KV存储

Key

Value

TransactionId

producerId

8

从0开始,依次递增

epoch

2

从0开始,依次递增

transactionTimeoutMs

4

事务超时时间,默认10秒,最大15分钟

transactionStatus

1

事务状态(

0-Empty 事务刚开始时init是这个状态

1-Ongoing

2-PrepareCommit

3-PrepareAbort

4-CompleteCommit

5-CompleteAbort

6-Dead

7-PrepareEpochFence

topicTotalNum

4

当前事务关联的所有topic总和

topicNameLen

2

topic长度

topicName

X

topic内容

partitionNum

4

partition的个数

partitionIds

X

例如有n个partition,X = n * 4,每个partition占用4 byte

transactionLastUpdateTimestampMs

8

最近一次事务操作的更新时间戳

transactionStartTimestampMs

8

事务启动的时间戳

这个Topic的可以让broker随时查看事务的当前状态,以及是否超时

相关代码 scala/kafka/coordinator/transaction/TransactionLog.scala#valueToBytes()

此步骤会让Broker向__transaction_state中写入一条数据(由于当前Coordinator是通过分区数取模得到的,因此向topic写入数据是直接写入本地盘的,没有网络开销),事务状态为Empty,同时向Producer返回ProducerId+Epoch。当前步骤在Broker端还有很多事务状态异常的判断,此处不再展开

四、事务启动-Transaction Begin

参与方:Producer

代码示例

producer.beginTransaction();

注:此步骤Producer不会向Broker发送请求,只是将本地的事务状态修改为 State.IN_TRANSACTION

Broker也并没有独立的步骤来处理事务启动,Broker在收到第一条消息时,才认为事务启动;那么Kafka为何要设计这样一个看起来很鸡肋的功能呢?直接发送消息不行么

一个正常的事务流程是这样的:

  • a、初始化
  • b、事务开始
  • c、发送消息
  • d、事务提交

因为事务消息可能是发送多次的,每次通过producer.beginTransaction()开启事务,可以使得代码更清晰,也更容易理解;因此多次发送的顺序会是这样

  1. ab、c、d
  2. b、c、d
  3. b、c、d
  4. b、c、d
  5. ......

五、事务消息发送-Transaction Send Msg

参与方:Producer、Broker

事务消息的发送是非常非常重要的环节,不论是Producer端还是Broker端,针对事务都做了大量的工作,不过在阐述核心功能前,还是需要对一些基础知识进行铺垫

5.1、消息协议

与RocketMQ不同,kafka消息协议的组装是在Producer端完成的,kafka消息协议经历了3个版本(v0、v1、v2)的迭代,我们看一下现存3个版本的协议对比

  • V0 版本相当整洁,不写注释都能明白每个字段的含义,而且除了key、value外,其他字段均为定长编码。这里简单阐述下attribute字段,该字段的前3个bit用来标志消息压缩类型,剩下5个bit为保留字段
  • V1 版本只是添加了时间戳字段,并启用了attribute字段的第4个bit,用来标志timestamp字段是消息born的时间,还是存储的时间

然而V2版本做了相当大的改动,甚至可以说是“面目全非”

V2版本引入了Record Batch的概念,同时也引入了可变长存储类型(本文不再展开),同一个Producer的消息会按照一定的策略归并入同一个Record Batch中;如果两个Producer,一个开启事务,一个关闭事务,分别向同一个Topic的同一个Partititon发送消息,那么存在在Broker端的消息会长什么样呢?

可见,同一个Record Batch中的Producer id、epoch、消息类型等都是一样的,所以不存在同一个Batch中,既有事务消息,又有非事务消息;换言之,某个Batch,要么是事务类型的,要么是非事务类型的,这点相当重要,在Consumer端消费消息时,还要依赖这个特性。因此在Producer端,即便是同一个进程内的2个producer实例,向同一个Topic的同一个Partition,一个发送事务消息,一个发送普通消息,两者间隔发送,这时会发现Record Batch的数量与消息的数量相同,即一个Record Batch中只会存放一条消息

5.2、消息幂等

众所周知,kafka是有消息超时重试机制的,既然存在重试,那么就有可能存在消息重复

  1. Producer发送Record Batch A
  2. Broker收到消息后存储并持久化下来,但是发送给Producer的response网络超时
  3. Producer发现发送消息超时,便重新发送该消息
  4. Broker并不知道收到的消息是重复消息,故再次将其存储下来,因此产生了重复数据

注:上述整个过程,Client的业务方并不知晓,重试逻辑由Producer内部控制,给业务方的感观便是消息发送了一份,却收到了两份数据

kafka要实现事务语义的话,消息重复肯定是接受不了的,因此保证消息幂等也就成了事务的前置条件。如何实现幂等呢,比较直观的思路便是给消息编号,这样Broker就可以判重了,事实上kafka也是这样做的;在Producer启动时,会进行初始化动作,此时会拿到(ProduceId+Epoch),然后在每条消息上添加Sequence字段(从0开始),之后的请求都会携带Sequence属性

  • 如果存在重复的RecordBatch(通过produceId+epoch+sequence),那么Broker会直接返回重复记录,client收到后丢弃重复数据
    • scala/kafka/log/ProducerStateManager.scala#findDuplicateBatch()
  • 如果Broker收到的RecordBatch与预期不匹配,例如比预期Sequence小或者大,都会抛出OutOfOrderSequenceException异常
    • 比预期Sequence小:这种请求就是典型的重复发送,直接拒绝掉并扔出异常
    • 比预期Sequence大:因为设置了幂等参数后,max.in.flight.requests.per.connection 参数的设定最大值即为5,即Producer可能同时发送了5个未ack的请求,Sequence较大的请求先来到了,依旧扔出上述异常

处理重复数据的关键代码如下 kafka.log.ProducerStateEntry#findDuplicateBatch()

  def findDuplicateBatch(batch: RecordBatch): Option[BatchMetadata] = {
    if (batch.producerEpoch != producerEpoch)
       None
    else
      batchWithSequenceRange(batch.baseSequence, batch.lastSequence)
  }

  // Return the batch metadata of the cached batch having the exact sequence range, if any.
  def batchWithSequenceRange(firstSeq: Int, lastSeq: Int): Option[BatchMetadata] = {
    val duplicate = batchMetadata.filter { metadata =>
      firstSeq == metadata.firstSeq && lastSeq == metadata.lastSeq
    }
    duplicate.headOption
  }

处理Sequence过大或过小代码如下 kafka.log.ProducerAppendInfo#checkSequence()

  private def checkSequence(producerEpoch: Short, appendFirstSeq: Int, offset: Long): Unit = {
    if (producerEpoch != updatedEntry.producerEpoch) {
      ......
    } else {
      ......
      // If there is no current producer epoch (possibly because all producer records have been deleted due to
      // retention or the DeleteRecords API) accept writes with any sequence number
      if (!(currentEntry.producerEpoch == RecordBatch.NO_PRODUCER_EPOCH || inSequence(currentLastSeq, appendFirstSeq))) {
        throw new OutOfOrderSequenceException(s"Out of order sequence number for producer $producerId at " +
          s"offset $offset in partition $topicPartition: $appendFirstSeq (incoming seq. number), " +
          s"$currentLastSeq (current end sequence number)")
      }
    }
  }

  private def inSequence(lastSeq: Int, nextSeq: Int): Boolean = {
    nextSeq == lastSeq + 1L || (nextSeq == 0 && lastSeq == Int.MaxValue)
  }

然而单纯依靠消息幂等,真正能够实现消息不重复、消息全局幂等吗?答案是否定的,假定这样的一个前置条件: “Produer发送了一条幂等消息,在收到ACK前重启了

  • 新启动的Produer实例会拥有新的Producer id,Broker并不能区分前后两个Producer是同一个,因此此条消息重发的话,就会产生消息重复
  • 新启动的Produer可能直接将此条消息发送给了其他Partition,Broker会将数据存储在另外的这个Partition,这样从全局来看,这条消息重复了

因此消息幂等能只够保证在单会话(session)、单partition的场景下能保证消息幂等

5.3、消息发送-Producer

参与方:Producer、Broker

Producer端在发送消息阶段,Producer与Broker的交互分两部分:

  1. 向当前事务的Coordinator发送添加Partiton的请求
    1. 对应的API为ApiKeys.ADD_PARTITIONS_TO_TXN
    2. 这个请求同步发送结束后,才会真正发送消息
  1. 向对应的分区发送消息
    1. 对应的API为ApiKeys.PRODUCE

也是事务消息比较影响性能的一个点,在每次真正发送Record Batch消息之前,都会向Coordinator同步发送Partition,之后才会真正发送消息。而这样做的好处也显而易见,当Producer挂掉后,Broker是存储了当前事务全量Partition列表的,这样不论是事务提交还是回滚,亦或是事务超时取消,Coordinator都拥有绝对的主动权

贴少量关键源码(本人不太喜欢大篇幅粘贴源码,这样会破会行文的连贯性,相信读者也不会通过此文去翻看源码。不过在不影响阅读的前提下,本文还是会黏贴一些关键代码)

这里是消息确定了最终Partition后,向transactionManager注册

  • org/apache/kafka/clients/producer/KafkaProducer.java#doSend()
// Add the partition to the transaction (if in progress) after it has been successfully
// appended to the accumulator. We cannot do it before because the partition may be
// unknown or the initially selected partition may be changed when the batch is closed
// (as indicated by `abortForNewBatch`). Note that the `Sender` will refuse to dequeue
// batches from the accumulator until they have been added to the transaction.
if (transactionManager != null) {
    transactionManager.maybeAddPartition(appendCallbacks.topicPartition());
}

Sender线程构建add partition请求

  • org/apache/kafka/clients/producer/internals/Sender.java#maybeSendAndPollTransactionalRequest()
TransactionManager.TxnRequestHandler nextRequestHandler = transactionManager.nextRequest(accumulator.hasIncomplete());
if (nextRequestHandler == null)
    return false;

5.4、消息发送-Coordinator

在消息发送阶段,Coordinator的参与主要是记录当前事务消息所在的Parition信息,即更新topic __transaction_state 的状态,正如前文所述,__transaction_state 为compact类型,以下属性将会被更新

topicTotalNum

4

当前事务关联的所有topic总和

topicNameLen

2

topic长度

topicName

X

topic内容

partitionNum

4

partition的个数

partitionIds

X

例如有n个partition,X = n * 4,每个partition占用4 byte

transactionLastUpdateTimestampMs

8

最近一次事务操作的更新时间戳

题外话:如果Coordinator记录了某个Partition参与了事务,但却没有向该Partition发送事务消息,这样会有影响吗?

  • 其实不会有影响的,在后文事务提交/取消模块会做详细说明,因为在topic__transaction_state中虽然记录了某个Partition参与了事务,但在事务提交阶段,只会向该Partition发送marker类型的控制消息,Consumer在收到controller类型的消息后会自动过滤,另外也不会影响当前Partition的LSO向前推进

5.5、消息发送-Broker

消息发送时,Broker做的很重要的一个工作是维护 LSO(log stable offset),一个Partition中可能存了多个事务消息,也有可能存储了很多非事务的普通消息,而LSO为第一个正在进行中(已经commit/abort的事务不算)的事务消息的offset

如上图:

  • a: 已经无效的事务
  • b: 已经提交的事务
  • c: 正在进行中的事务(不确定最终是取消还是提交)
  • d: 普通消息,非事务消息

因此LSO的位置就在第一个正在进行中的事务的首消息的offset。消息不断写入,Broker需要实时维护LSO的位置,而在LSO以下的位置的消息是不可以被标记为READ_COMMITED的consumer消费的。

这里稍微引申一下Consumer端的逻辑,LSO标记之前的消息都可以被consumer看到,那么如上图,LSO之前有3条消息,2个a(事务取消),1个b(事务提交),consumer读到这3条消息后怎么处理呢?无非就是以下两种处理逻辑:

  1. 暂存在consumer端,直至读取到事务最终状态,再来判断是吐给业务端(事务成功),还是消息扔掉(事务取消)
    1. 这样设计是没有问题的,可以保证消息的准确性,但是如果某个事务提交的数据量巨大(事务最长超时时间可达15分钟),这样势必造成consumer端内存吃紧,甚至OOM
  1. 实时判断当前消息是该成功消费还是被扔掉
    1. 能够实时判断肯定是非常理想的结果,可是如何实时判断呢?难道每次消费时都要再向broker发送请求获取消息的状态吗?

具体采用哪种策略,我们在消息消费的章节再来展开

六、事务提交-Transaction Commit

参与方:Producer、Broker

6.1、事务提交-Producer

事务提交时Producer端触发的,代码如下

producer.commitTransaction();

事务提交对应的API为ApiKeys.END_TXN,Producer向Broker请求的入参为

  • transactionalId 事务id,即客户自定义的字符串
  • producerId producer id,由coordinator生成,递增
  • epoch 由coordinator生成
  • committed true:commit false:abort

可以看到,在事务提交阶段,Producer只是触发了提交动作,并携带了事务所需的参数,所做的操作相当有限,重头还是在Coordinator端

注:这里的提交动作是直接提交给Coordinator的,就跟事务初始化阶段,获取Producer id一样

6.2、事务提交-Coordinator

在内部Topic __transaction_state 中存储了当前事务所关联的所有Partition信息,因此在提交阶段,就是向这些Partition发送control marker信息,用来标记当前事务的结束。而事务消息的标志正如前文消息协议所述,在attribute字段的第5个bit

attribute字段:

control

如前文所说,LSO以下的消息是不会被消费到,这样控制了事务消息的可见性,想控制这点,难度应该不大;但事务提交后,所有当前事务的消息均可见了,那事务提交时,具体发生了什么,是如何控制可能分布在多台broker上的消息同时可见呢?

上图以3个Broker组成的事务举例:

  • 1、Producer提交事务
  • 2、Coordinator收到请求后 ,将事务状态修改为PrepareCommit(其实就是向__transaction_state追加一条消息)
  • 3.1、向Producer响应,事务提交成功
  • 3.2、之后向各个Broker发送control marker消息,Broker收到后将消息存储下来,用来比较当前事务已经成功提交
  • 4、待各个Broker存储control marker消息后,Coordinator将事务状态修改为commit,事务结束

看起来是两阶段提交,且一切正常,但却有一些疑问:

问题1: 3.1向__transaction_state写完事务状态后,便给Producer回应说事务提交成功,假如说3.2执行过程中被hang住了,在Producer看来,既然事务已经提交成功,为什么还是读不到对应消息呢?

的确是这样,这里成功指的是Coordinator收到了消息,并且成功修改了事务状态。因此返回成功的语义指的是一阶段提交成功,因为后续向各个Partition发送写marker的会无限重试,直至成功

问题2: 3.2中向多个Broker发送marker消息,如果Broker1、Broker2均写入成功了,但是Broker3因为网络抖动,Coordinator还在重试,那么此时Broker1、Broker2上的消息对Consumer来说已经可见了,但是Broker3上的消息还是看不到,这不就不符合事务语义了吗?

事实确实如此,所以kafka的事务不能保证强一致性,并不是说kafka做的不够完美,而是这种分布式事务统一存在类似的问题,CAP铁律限制,这里只能做到最终一致性了。不过对于常规的场景这里已经够用了,Coordinator会不遗余力的重试,直至成功

kafka.coordinator.transaction.TransactionCoordinator#endTransaction() 这里是当__transaction_state状态改为PrepareCommit后,就向Producer返回成功

case Right((txnMetadata, newPreSendMetadata)) =>
  // we can respond to the client immediately and continue to write the txn markers if
  // the log append was successful
  responseCallback(Errors.NONE)

  txnMarkerChannelManager.addTxnMarkersToSend(coordinatorEpoch, txnMarkerResult, txnMetadata, newPreSendMetadata)

七、事务取消-Transaction Abort

参与方:Producer、Broker

7.1、事务取消-Producer

事务取消如果是Producer端触发的,代码如下

producer.abortTransaction();

事务提交对应的API为ApiKeys.END_TXN(与事务提交是同一个API,不过参数不一样),Producer向Broker请求的入参为

  • transactionalId 事务id,即客户自定义的字符串
  • producerId producer id,由coordinator生成,递增
  • epoch 由coordinator生成
  • committed false:abort

7.2、事务取消-Coordinator

事务取消除了由Producer触发外,还有可能由Coordinator触发,例如“事务超时”,Coordinator有个定时器,定时扫描那些已经超时的事务

kafka.coordinator.transaction.TransactionCoordinator#startup()

  def startup(retrieveTransactionTopicPartitionCount: () => Int, enableTransactionalIdExpiration: Boolean = true): Unit = {
    info("Starting up.")
    scheduler.startup()
    scheduler.schedule("transaction-abort",
      () => abortTimedOutTransactions(onEndTransactionComplete),
      txnConfig.abortTimedOutTransactionsIntervalMs,
      txnConfig.abortTimedOutTransactionsIntervalMs
    )
    txnManager.startup(retrieveTransactionTopicPartitionCount, enableTransactionalIdExpiration)
    txnMarkerChannelManager.start()
    isActive.set(true)

    info("Startup complete.")
  }

其实事务取消的流程在Coordinator端,跟事务提交大同小异,不过事务取消会向.txnindex文件写入数据,也就是.txnindex文件存储了所有已取消的事务详情。对应源码文件为 kafka.log.AbortedTxn.scala.txnindex文件存储协议如下

  • currentVersion 当前文件版本号,目前为0
  • producerId producerId
  • firstOffset 当前事务的开始offset
  • lastOffset 当前事务的结束offset
  • lastStableOffset 存储时的LSO

存储详情中,不需要记录epoch、sequence等信息,因为这个文件的目的是配合Consumer进行消息过滤的,有了事务的起止offset已经足够

firstOffset 与 lastOffset 可能跨度很长,之间如果有多个事务如何区分呢?

其实首先明确一点,同一个ProducerId在同一个时间段,只会存在一个事务,例如某条记录是这样存储:(producerId:1000, firstOffset:20, lastOffset:80) ,也就是offset在20与80之间,producerId为1000的记录只会存在一条,当然也有可能出现如下记录

  • (producerId:1001, firstOffset:30, lastOffset:40)
  • (producerId:1001, firstOffset:50, lastOffset:60)

但是producerId一定不是1000了,这点很关键,因为在事务消息消费时,还要依赖这个

append“事务取消记录”入口 kafka.log.LogSegment#updateTxnIndex()

八、事务消费

参与方:Consumer、Broker

前文所有的工作,其实都体现在事务消费上,消费事务消息,也是kafka非常重要的课题

8.1、消费策略对比

当consumer的事务隔离级别(isolation.level)设置为 read_committed 后,便只能拉取LSO以下的记录,且返回的信息中还会携带已取消的事务

kafka.log.UnifiedLog#read

  def read(startOffset: Long,
           maxLength: Int,
           isolation: FetchIsolation,
           minOneMessage: Boolean): FetchDataInfo = {
    checkLogStartOffset(startOffset)
    val maxOffsetMetadata = isolation match {
      case FetchLogEnd => localLog.logEndOffsetMetadata
      case FetchHighWatermark => fetchHighWatermarkMetadata
      case FetchTxnCommitted => fetchLastStableOffsetMetadata
    }
    localLog.read(startOffset, maxLength, minOneMessage, maxOffsetMetadata, isolation == FetchTxnCommitted)
  }

正如前文所说,LSO之前的记录,均是已提交或已取消的事务;因此在一个事务未完成之前,是永远都不会被consumer拉取到的。此时还要引出前文提出的问题,即consumer消息策略

  • 策略一:拉取位点设置为High Water Mark,consumer不断拉取消息,不论是已经完结的事务消息还是未完结,亦或是普通消息,统一进行拉取;然后在consumer端进行过滤,发现某事务消息未完结,那么暂存在consumer,等收到control mark消息后,再判断将所有消息返回给业务方,或是丢弃
  • 策略二:拉取位点设置为Last Stable Offset,consumer只返回最后一个已完结事务之前的消息,consumer拉取消息后,即便是事务marker还未拉取,也可以判断是提交还是丢弃

其实很明显,现在kafka最新版本采用的是策略二,不过我们还是有必要比较一下两者优缺点

策略一

策略二

优点

  • 性能相对较高,比如LSO之后存在一些已提交的事务消息,或者普通消息,能够及时消费到
  • 不会造成consume端OOM;只消费LSO以下的消息,因此在拿到消息后便可以判断是commit还是abort
  • consumer退出或重启,走常规应对即可,降低位点管理的复杂度

缺点

  • 如果事务跨度过长,容易造成consumer端的消息积压,从而OOM
  • consumer退出或重启,对于已积累但未吐出的消息很难处理,需要使用复杂的逻辑来管理位点
  • 性能较低,由于consumer只能看到LSO以下的消息,故一些非事务消息(或已完结的事务消息,但在LSO之上)不能及时消费。

综合考虑后,kafka还是选择了可控性较强,且没有致命bug的策略二,虽然有一些性能损失,但换来的是整个集群的稳定性

8.2、常规消费事务消息

当consumer设置了read_committed消费消息时,除了返回常规的RecordBatch集合外,还会返回拉取区间已取消的事务列表。假定consumer收到了一段数据:

其中白色的为非事务消息,即普通消息,彩色的为事务消息,相同颜色的消息为同一事务。下面表格中,abortTxns的格式为 (producerId, startOffset, endOffset)

abortTxns

有效消息

无效消息

说明

empty

100-115

当取消事务列表为空时,说明当前读取到事务消息均为提交成功的事务消息

[(10, 101, 115)]

100,

103-114

101,102,115

abort列表表明producerId为10的事务已经取消,因此扫描整个列表,发现符合abort条件的记录是101、102、115

[(11, 110, 112)]

100-109,

111,

113-115

110, 112

虽然103、106的producerId也是11,但是offset range并不匹配;虽然111的offset range匹配,但是其producerId不匹配

[(10, 101, 115),

(11, 103, 106),

(12, 104, 111)]

100,105,109,110,112,113,114

101-104,

106-108,

111, 115

不再赘述,无效消息通过producerId+offset range统一来确定

注:consumer在读取以上信息的时候,可能并没有读取到control marker信息,但是已经能够确定目标消息是事务完结状态,且已经知道事务是commit或abort了,因此可以直接处理;而control消息是由coordinator发送给各个partition的,属于内部消息,consumer对于control消息是会自动过滤掉的

org.apache.kafka.clients.consumer.internals.Fetcher.CompletedFetch#nextFetchedRecord()

// control records are not returned to the user
if (!currentBatch.isControlBatch()) {
    return record;
} else {
    // Increment the next fetch offset when we skip a control batch.
    nextFetchOffset = record.offset() + 1;
}

8.3、业务方事务

既然kafka已经实现了事务,那么我们的业务系统中是否可以直接依赖这一特性?

假如这样使用kafka:

  1. 业务方通过consumer拉取一条消息
  2. 业务程序通过这条消息处理业务,可能将结果存入mysql或写入文件或其他存储介质

如果业务方将1、2整体当做是一个事务的话,那么理解就有偏差了,因为这个过程当中还缺少提交位点的步骤,假如步骤2已经执行完毕,但还未提交位点,consumer发生了重启了,那么这条消息还会被再次消费,因此kafka所说的事务支持,指的是读取、写入都在kafka集群上

8.4、Exactly Once

消息的消费可以分为三种类型

  • At Least Once(至少一次)
    • 也就是某条消息,至少会被消费一次,潜台词就是消息可能会被消费多次,也就是重复消费;kafka默认的消费类型,实现它的原理很简单,就是在业务方将消息消费掉后,再提交其对应的位点,业务方只要做好消息去重,运行起来还是很严谨的
  • At Most Once (至多一次)
    • 与至少一次相对,不存在重复消费的情况,某条消息最多被消费一次,潜台词就是可能会丢消息;实现原理还是控制位点,在消费某条消息之前,先提交其位点,再消费,如果提交了位点,consumer重启了,重启后从最新位点开始消费数据,也就是之前的数据丢失了,并没有真正消费
  • Exactly Once(精确一次)
    • 不论是“至少一次”还是“至多一次”都不如精确一次来的生猛,有文章说kafka事务实现了精确一次,但这样评论是不够严谨的,如果业务方将一次「拉取消息+业务处理」当做一次处理的话,那即便是开启了事务也不能保证精确一次;这里的精确一次指的读取、写入都是操作的kafka集群,而不能引入业务处理

关于Exactly Once,这里引用一下官方对其描述,Exactly-once Semantics in Apache Kafka

  • Idempotent producer: Exactly-once, in-order, delivery per partition.
  • Transactions: Atomic writes across partitions.
  • Exactly-once stream processing across read-process-write tasks.

简单概括一下就是 1、幂等型的Producer,在单分区的前提下支持精准一次、有序的消息投递;2、事务,跨多分区的原子写入 3、Stream任务,类型为read-process-write形式的,可做到精确一次

举Stream中的例子:从1个Topic中读取数据,经过业务方的加工后,写入另外Topic中

producer.initTransactions();
producer.beginTransaction();

ConsumerRecords<String, String> consumerRecords = consumer.poll(Duration.ofMillis(1000));
Map<TopicPartition, OffsetAndMetadata> offsets = new HashMap<>();
for (TopicPartition partition : consumerRecords.partitions()) {
    List<ConsumerRecord<String, String>> partitionRecords = consumerRecords.records(partition);
    for (ConsumerRecord<String, String> record : partitionRecords) {
        ProducerRecord<String, String> producerRecord = new ProducerRecord<>("topic-sink", record.key(), record.value());
        producer.send(producerRecord);
    }
    long lastConsumedOffset = partitionRecords.get(partitionRecords.size() - 1).offset();
    offsets.put(partition, new OffsetAndMetadata(lastConsumedOffset + 1));
}
producer.sendOffsetsToTransaction(offsets, new ConsumerGroupMetadata("groupId"));

producer.commitTransaction();

可以简单认为,将一次数据读取,转换为了数据写入,并统一归并至当前事务中;关键代码为

producer.sendOffsetsToTransaction(offsets, new ConsumerGroupMetadata("groupId"));

这个请求对应的API是ApiKeys.ADD_OFFSETS_TO_TXN,参数列表为

  • transactionalId
  • producerId
  • epoch
  • groupId

核心思想就是算出groupId在__consumer_offsets中对应的partition,然后将该partition加入事务中,在事务提交/取消时,再统一操作,这样便实现了读与写的原子性。

不过这样做的前提是consumer需要将enable.auto.commit参数设置为false,并使用producer.sendOffsetsToTransaction()来提交offset

九、事务状态流转

事务总共有8种状态

state

desc

0-Empty

Transaction has not existed yet

  • received AddPartitionsToTxnRequest => Ongoing
  • received AddOffsetsToTxnRequest => Ongoing

1-Ongoing

Transaction has started and ongoing

  • received EndTxnRequest with commit => PrepareCommit
  • received EndTxnRequest with abort => PrepareAbort
  • received AddPartitionsToTxnRequest => Ongoing
  • received AddOffsetsToTxnRequest => Ongoing

2-PrepareCommit

Group is preparing to commit

  • received acks from all partitions => CompleteCommit

3-PrepareAbort

Group is preparing to abort

  • received acks from all partitions => CompleteAbort

4-CompleteCommit

Group has completed commit

Will soon be removed from the ongoing transaction cache

5-CompleteAbort

Group has completed abort

Will soon be removed from the ongoing transaction cache

6-Dead

TransactionalId has expired and is about to be removed from the transaction cache

7-PrepareEpochFence

We are in the middle of bumping the epoch and fencing out older producers.

最常见的状态流转

  • Empty->Ongong->PrepareCommit->CompleteCommit->Empty
  • Empty->Ongong->PrepareAbort->CompleteAbort->Empty

十、事务Topic及文件

10.1、简单总结

总结一下kafka事务相关的一些topic及文件。topic只有一个,是专门为事务特性服务的,而文件有两个,这里的文件指的是所有参与事务的topic下文件

  • Topic
    • __transaction_state内部compact topic,主要是将事务状态持久化,避免Transactional Coordinator重启或切换后事务状态丢失
  • 文件
    • .txnindex 存放已经取消事务的记录,请问已经提到过,如果当前logSegment没有取消的事务,那么这个文件也不会存在
    • .snapshot 正如其名,因为Broker端要存放每个ProducerId与Sequence的映射关系,目的是sequence num的验重

10.2、.snapshot 文件

.snapshot 跟其他索引文件不同,其他索引文件都是随着记录的增加,动态append到文件中的;而.snapshot文件则是在logSegment roll时,也就是切换下一个log文件时,将当前缓存中的所有producerId及Sequence的映射关系存储下来。一旦发生Broker宕机,重启后只需要将最近一个.snapshot读取出来,并通过log文件将后续的数据补充进来,这样缓存中就可以存储当前分区的全量索引

field

desc

Version

Version of the snapshot file

Crc

CRC of the snapshot data

Number

The entries in the producer table

ProducerId

The producer ID

ProducerEpoch

Current epoch of the producer

LastSequence

Last written sequence of the producer

LastOffset

Last written offset of the producer

OffsetDelta

The difference of the last sequence and first sequence in the last written batch

Timestamp

Max timestamp from the last written entry

CoordinatorEpoch

The epoch of the last transaction coordinator to send an end transaction marker

CurrentTxnFirstOffset

The first offset of the on-going transaction (-1 if there is none)

附录

事务中使用的API

API KEY

描述

ApiKeys.FIND_COORDINATOR

寻找transaction coordinator

ApiKeys.INIT_PRODUCER_ID

初始化producerId及epoch

ApiKeys.ADD_PARTITIONS_TO_TXN

将某个partition添加进入事务

ApiKeys.PRODUCE

发送消息

ApiKeys.END_TXN

事务结束,包括事务提交跟事务取消

ApiKeys.FETCH

拉取消息

ApiKeys.ADD_OFFSETS_TO_TXN

read-process-write模式时使用,用于将一次读操作转换为写行为

部分代码记录

注:本文所有代码截取均基于开源v3.3.1版本

  • kafka topic 中的文件 kafka.log.UnifiedLog#1767
object UnifiedLog extends Logging {
  val LogFileSuffix = LocalLog.LogFileSuffix
  val IndexFileSuffix = LocalLog.IndexFileSuffix
  val TimeIndexFileSuffix = LocalLog.TimeIndexFileSuffix
  val ProducerSnapshotFileSuffix = ".snapshot"
  val TxnIndexFileSuffix = LocalLog.TxnIndexFileSuffix
  val DeletedFileSuffix = LocalLog.DeletedFileSuffix
  val CleanedFileSuffix = LocalLog.CleanedFileSuffix
  val SwapFileSuffix = LocalLog.SwapFileSuffix
  val DeleteDirSuffix = LocalLog.DeleteDirSuffix
  val FutureDirSuffix = LocalLog.FutureDirSuffix
  • 根据TransactionId计算partition kafka.coordinator.transaction.TransactionStateManager#partitionFor
def partitionFor(transactionalId: String): Int = Utils.abs(transactionalId.hashCode) % transactionTopicPartitionCount
  • 生成ProducerId kafka.coordinator.transaction.ZkProducerIdManager#generateProducerId
  def generateProducerId(): Long = {
    this synchronized {
      // grab a new block of producerIds if this block has been exhausted
      if (nextProducerId > currentProducerIdBlock.lastProducerId) {
        allocateNewProducerIdBlock()
        nextProducerId = currentProducerIdBlock.firstProducerId
      }
      nextProducerId += 1
      nextProducerId - 1
    }
  }
  • 过滤control消息 org.apache.kafka.clients.consumer.internals.Fetcher.CompletedFetch#nextFetchedRecord
if (record.offset() >= nextFetchOffset) {
    // we only do validation when the message should not be skipped.
    maybeEnsureValid(record);

    // control records are not returned to the user
    if (!currentBatch.isControlBatch()) {
        return record;
    } else {
        // Increment the next fetch offset when we skip a control batch.
        nextFetchOffset = record.offset() + 1;
    }
}

参考:

Apache Kafka’s Exactly-Once Semantics Are Now Easier & More Robust

https://www.slideshare.net/ConfluentInc/exactlyonce-semantics-in-apache-kafka

https://docs.google.com/document/d/11Jqy_GjUGtdXJK94XGsEIK7CP1SnQGdp2eF0wSw9ra8/edit

Kafka Exactly-Once 之事务性实现 | Matt's Blog

Kafka Exactly Once语义与事务机制原理 | 技术世界 | kafka,大数据,集群,消息系统,郭俊 Jason,kafka 架构,kafka 事务,exactly once,正好一次

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值