避坑
错译 (交易方向和数字都有问题,如果看的是中文版翻译,一算就错) | 2第二小问改成“买”看涨 13第三个行权价X2对应的是买入 21最后一句改成: 提示:这两个期权,哪一个成本更高? 27第二个期权的价格不是6,是9美元 |
数据 | 第10版后,部分题目数据更新,但方法完全一致。包括: 26 28 29 30 |
好题推荐
概念 | 多头对敲/异价跨式组合13,20 牛市价差/熊市价差14,21,25 蝶式价差13 双限期权15 期权视角下的公司理财学18 可转债易混易错概念,CFA3-4 |
计算 | 8,买卖权平价定理 24,风险中性定价 |
证明 | 12,带分红的欧式期权的平价关系定理 28,金融工程题,考察现金流建模能力 29,考察平价定理成立的前提,已经有很浓的数学味 30,无分红的欧式期权平价定理 |
基础题
1
//考察交易策略。at the money风险最大,protective put和covered call等就是很好的对冲。看下答案就行。
风险增加:卖出看涨期权,一旦股价上涨,而且幅度很大,必然面临着损失无限的情况。
风险减少:买入看涨期权,一旦股价上涨,损失有限而收益无限。
2
//提示:中文版买卖方向翻译反了。这题做着玩的,不用担心。
卖Call,赌股价下跌获得的premium,与股价一旦上涨带来的无限损失,需要权衡。
3
卖put,赌股价上涨获得的premium,与股价一旦下跌带来的无限损失,需要权衡。
4
//提示:这道题超出了投资学的内容。经济学上是求敏感度,证明在平值点最高;数学上就是对时间价值函数求最大值。
平值期权意味着期权价格等于行权价,内在价值为0,时间价值最大。无论看涨看跌期权,只要价格稍微变动,买方可获得的收益,弹性是极高的。
中级题
5
到期日价格125
期权序号 | 期权性质 | 期权价格 | 收益 | 利润 |
a | 1月call 120 | 8.63 | 5 | -3.63 |
b | 1月put 120 | 1.18 | 0 | -1.18 |
c | 1月call 125 | 4.75 | 0 | -4.75 |
d | 1月put 125 | 2.44 | 0 | -2.44 |
e | 1月call 130 | 2.18 | 0 | -2.18 |
f | 1月put 130 | 4.79 | 5 | 0.21 |
//提示:最后一道,心理上很容易处理成5.79-4.79……老老实实打草稿,别心算。
6
6个月后股价 | 行权价 | 100 | ||
80 | 100 | 110 | 120 | |
全股票 | -20.00% | 0.00% | 10.00% | 20.00% |
全期权 | -100.00% | -100.00% | 0.00% | 100.00% |
票据+期权 | -6.40% | -6.40% | 3.60% | 13.60% |
7
1)不分红的买卖权平价关系定理为
C+PV(K)=S+P
∴P=C-S+PV(K)=10-100+100/1.025=7.56元
2)鉴于股价预期波动变大,需执行多头对敲long straddle交易策略。
期初交易 | 期初现金流 | 期末价格对应现金流 | |
小于100 | 大于100 | ||
long call | -10 | 0 | ST-100 |
long put | -7.56 | 100-ST | 0 |
total | -17.56 | 100-ST | ST-100 |
PNL=|100-ST|-17.56
显然,若PNL大于0,必有ST∈[0,82.44)∪(117.56,+∞)
8
1)不分红的情况下,由买卖权平价关系定理,
C=S+P-PV(X)=50+4-50*1.1^(-0.25)=5.18元
//博迪把rf当成EAR,用幂运算求计息期折现率。CPA和理财学是当成APR,直接除以四。区别不大,清华真题统一用严谨的数学计算,比如2022年的流通债券。
2)鉴于未来股价波动率较小,应当执行空头对敲交易策略,short straddle
期初交易 | 期初现金流 | 期末价格对应现金流 | |
小于50 | 大于50 | ||
short call | 5.18 | 0 | -(ST-50) |
short put | 4 | -(50-ST) | 0 |
total | 9.18 | -(50-ST) | -(ST-50) |
PNL=9.18-|ST-50|
显然,若PNL大于0,必有ST∈(40.82,59.18)
若股价波动超过这一范围,看涨期权和看跌期权会处于深度实值,对期权空方意味着损失。
3)由不分红时的买卖权平价关系定理,
S=C+PV(X)-P
可以构建以下头寸,复制出股票的现金流:
期初交易 | 期初现金流 | 期末价格对应现金流 | |
小于50 | 大于50 | ||
long call | -5.18 | 0 | (ST-50) |
long bill | -48.82 | +50 | +50 |
short put | +4 | -(50-ST) | 0 |
total | -50 | ST | ST |
因此,考虑概率分布,该组合的现金流与股票完全一致。反映在期初搭建的成本上,正好等于当前股价。
9
//提示:参考答案同时考虑了价格上涨下跌的可能,分布更全面
选A。价格往两侧移动的可能性很高,多头对敲,能在波动率高的时候获得最大收益。
相比之下,牛市价差只能在价格上涨时盈利,空头对敲在波动率高的时候巨亏。
选A。大幅亏损的时候,买看涨无法行权,丢失保费;卖看涨只能挣保费。买看跌收益最高。
10
期初交易 | 期初现金流 | 期末价格对应现金流 | ||
<35 | [35,40] | >40 | ||
long spot | -38 | +ST | +ST | +ST |
long put1 | -0.5 | +(35-ST) | 0 | 0 |
short call2 | +0.5 | 0 | 0 | -(ST-40) |
revenue | -38 | +35 | ST | 40 |
profit | -3 | ST-38 | 2 |
综上所述,利润最低-3,最大2
11
//注意我手里有5000股,而非一股。最后的答案不能忘了剩下的4999股。
期初交易 | 期初现金流 | 到期日价格对应现金流 | ||
<35 | [35,45] | >45 | ||
long spot | -40 | +ST | +ST | +ST |
long put1 | -3 | 35-ST | 0 | 0 |
short call2 | +2 | 0 | 0 | 45-ST |
revenue | -41 | 35 | ST | 45 |
与仅持有现货相比,该交易策略同时锁定了收益、利润的上下限。价格跌破35元时,依然可收入35元;价格突破45元时,也只能收入45元。
12证明欧式期权带分红的平价关系
1)protective put现金流分布如下
i | 期初 | 期末 | |
ST<X | ST>X | ||
long spot | -S0 | ST+D | ST+D |
long put | -P | X-ST | 0 |
total cash flow | -P-S0 | X+D | ST+D |
2)call plus bill现金流分布如下
i | 期初 | 期末 | |
ST<X | ST>X | ||
long bill | -(X+D)/(1+r) | X+D | X+D |
long call | -C | 0 | ST-X |
total cash flow | -C-(X+D)/(1+r) | X+D | ST+D |
3)由1)2)得两种交易策略的期末现金流概率分布完全一致
在无套利均衡条件下,必有期初成本一致
-P-S0=-C-(X+D)/(1+r)
解得P=C-S0+PV(X)+PV(D)
//另类解释:从当期价格S0中,减去未来股利的现值PV(D),以在同一时间点完成定价工作
13
//中文版交易方向再次翻译错误
1)蝶式差价butterfly spread
到期日相同,行权价X1 X2 X3成等差数列,两端各买一份,中间卖出两份
期初交易 | 期初现金流 | 期末价格对应现金流 | |||
[0,X1) | [X1,X2) | [X2,,X3) | [X3,+∞) | ||
long call1x1 | -C1 | 0 | ST-X1 | ST-X1 | ST-X1 |
short call2x2 | +2C2 | 0 | 0 | -2(ST-X2) | -2(ST-X2) |
long call3x1 | +C3 | 0 | 0 | 0 | +(ST-X3) |
revenue | -C1+2C2+C3 | 0 | ST-X1 | 2X2-X1-ST=X3-ST | 2X2-X1-X3=0 |
profit |
//表格为现金流方向, 不是交易方向
2)垂直组合strangle
异价跨式期权,在多头对敲基础上,低行权价买看跌,高行权价买看涨
期初交易 | 期初现金流 | 期末价格对应现金流 | ||
[0,X1) | [X1,X2) | [X2,+∞) | ||
long put1x1 | -P1 | X1-ST | 0 | 0 |
long call2x1 | -C2 | 0 | 0 | ST-X2 |
revenue | -P1-C2 | X1-ST | 0 | ST-X2 |
profit |
14
熊市价差bear spread using puts
对看涨,卖低行权价,买高行权价
期初交易 | 期初现金流 | 期末价格对应现金流 | ||
<x1 | X1,X2 | >X2 | ||
short call1x1 | +C1 | 0 | -(ST-X1) | -(ST-X1) |
long call2x1 | -C2 | 0 | 0 | ST-X2 |
revenue | 0 | X1-ST | X1-X2 | |
profit |
图像与牛市价差关于横轴对称
当且仅当价格下跌时,白赚卖出的看涨期权的premium。现货价格上涨后,可用买入的C2对冲损失。
15
该投资者担心现货价格下跌,因此应主要对冲下行风险。
1)若执行抛补性看涨交易策略,现金流概率分布及收益图如下:
期初交易 | 期初现金流 | 期末价格对应现金流 | |
[0,45) | [45,+∞) | ||
long spotx1 | ST | ST | |
short callx1 | +3 | 0 | -(ST-45) |
revenue | ST | 45 | |
profit | ST+3 | 45+3 |
//评估投资组合策略的方法:根据投资者的风险偏好和股价运动概率分布,涨跌都做分析
优点是锁定了价格上涨时的收入,最高可收入48000美元,甚至超过了预估的45000美元市值;
缺点是价格跌破32美元时,他依然无力买房。
2)若执行保护性看跌交易策略,现金流概率分布及收益图如下:
期初交易 | 期初现金流 | 期末价格对应现金流 | |
[0,35) | [35,+∞) | ||
long spotx1 | ST | ST | |
long putx1 | -3 | 35-ST | 0 |
revenue | 35 | ST | |
profit | 32 | ST |
优点是锁定了收入的下限35000美元,且价格突破行权价后的收入与现货一致。
缺点是该策略需要交看跌premium,虽然是期初一次性缴纳,对整体利润依然会有影响。
//问:需要考虑C P缴费时间吗?
//答:无所谓,这道题的重点是她交不起35000的房费。有这个意思就行。事实上,期末收入了35000,是买得起的,这是这道题的一个bug。
3)若执行双限期权交易策略,现金流概率分布及收益图如下:
期初交易 | 期初现金流 | 期末价格对应现金流 | ||
[0,35) | [35,45) | >45 | ||
long spotx1 | ST | ST | ST | |
long putx1 | -3 | 35-ST | 0 | 0 |
short callx1 | +3 | 0 | 0 | -(ST-45) |
revenue | 35 | ST | 45 | |
profit | 35 | ST | 45 |
优点是锁定了收入的下限和上限。期初的看涨空头和看跌多头头寸抵消,实现零成本。
4)推荐策略C。该策略能对冲价格走低的风险,锁定35000美元的收入,为投资者买方提供保障。
16略
17
农场主拥有一份保护性看跌期权组合,标的资产是农产品现货价格,行权价就是农产品保护价。
价格跌破行权价时,农场主可以行权并与现货结合,锁定最低收入。
18
//审题要仔细,不要只答一半!
视公司为一个整体,相当于持有一份看跌期权。当公司资产价格不抵债务时,相当于公司价值跌破债务看跌期权行权价。股东可放弃公司控制权,将资产全部售给债权人,并抵消债务;售价就是全部债务。债权人必须承担买方角色,一方面买回债务,另一方面出售公司资产,获得低于行权价的资产。
换个视角,股东也可以在V超过B的时候行权,用B购回公司,取得差价所得作为股东财富。股东从债权人处买了一份看涨期权。
19
高管相当于持有1000份看涨期权。当股价超过行权价时,每份期权带来ST-X的收入,乘以1000份后的现金流概率分布与经理补偿金方案一致。
20
1)
期初交易 | 期初现金流 | 期末价格对应现金流 | ||
[0,125) | [125,130) | [130,+∞) | ||
short put1 | +P1 | -(125-ST) | 0 | 0 |
short call2 | +C2 | 0 | 0 | -(ST-130) |
revenue | ST-125 | -0 | 130-ST | |
profit | ST-125+P1+C2 | P1+C2 | 130-ST+P1+C2 |
2)股价在两行权价之间,利润为P1+C2=2.44+2.18=4.62元
股价135,PNL=130-135+4.62=-0.38元
3)在左右两个不可导点,计算PNL临界点得
左盈亏平衡点为125-4.62=120.38元
右盈亏平衡点为130+4.62=134.62元
4)投资者在赌IBM股票变动范围是[120.38, 134.62]
21
1)该交易为:用看跌期权构建熊市价差。无论C还是P,关于两行权价的交易方向,都和牛市价差相反。
期初交易 | 期初现金流 | 期末价格对应现金流 | ||
[0,90) | [90,95) | [95,+∞) | ||
short put1 | +P1 | -(90-ST) | 0 | 0 |
long put2 | -P2 | 95-ST | 95-ST | 0 |
revenue | 5 | 95-ST | 0 | |
profit | 5+P1-P2 | 95-ST+P1-P2 | 130-ST+P1+C2 |
2)到期日、标的股票相同时,由BSM公式,P相对于X的一阶偏导数为正。
X1<X2,故P1<P2。但有5元的期权收入可以对冲。收益和利润图如下:
求证:利润图纵轴截距P1-P2+X2-X1>0
证明:由BSM期权定价公式,在不分红的情况下,
d1=(ln(S/X)+(r+0.5σ2)√T)/σ√T,d2=d1-σ√T
C=SN(d1)-Xe^(-rT)N(d2)
由买卖权平价关系定理
P=C+Xe^(-rT)-S=SN(d1)-Xe^(-rT)N(d2)+Xe^(-rT)-S
=Xe^(-rT)(1-N(d2))-S(1-N(d1))=Xe^(-rT)N(-d2)-SN(-d1)
//也可以重复伊藤积分的证明过程推导P的公式
∵X1<X2
∴P1-P2+X2-X1=X1e^(-rT)N(-d2)-SN(-d1)-X2e^(-rT)N(-d2)+SN(-d1)+X2-X1
=X1e^(-rT)N(-d2)-X2e^(-rT)N(-d2)+X2-X1
=(X1-X2)[e^(-rT)N(-d2)-1]
其中X1-X2<0
e^(-rT)N(-d2)-1<1*0.5-1<0
故(X1-X2)[e^(-rT)N(-d2)-1]>0
证迄。
22
到期日相同,时间价值应当相同。行权价62的看跌期权应该售价更高,所以显然被低估了。可构建无风险套利交易策略如下:
期初交易 | 期初现金流 | 期末价格对应现金流 | ||
[0,60) | [60,62) | [62,+∞) | ||
long put2 | -P2=-2 | 62-ST | 62-ST | 0 |
short put1 | +P1=+2 | -(60-ST) | 0 | 0 |
revenue | 0 | 2 | 62-ST | 0 |
profit | 2 | 62-ST | 0 |
由于期初成本为0,收益函数与利润函数重叠。可获得最高2元的套利收入,但不可能为负。
//正因为利润非负,所以尽管概率分布不是单值,也可以判断为无风险策略。
23
//分析:考察带分红的欧式看涨看跌期权平价关系。
C+PV(X)=S-PV(D)+P
解:
由期权价值的定义,平值期权当前行权的内在价值为0,也就是当前股价等于行权价。
∴行权价X=100元
根据带分红的买卖权平价关系定理,
C=S-PV(D)+P-PV(X)
=100-2/1.05+7-100/1.05=9.86元
//问:为什么要强调平值?
//答:问得好。写出来公式,就会发现题目没给行权价。
24【风险中性原理】
//24和25可以放一起做,总结常见的期权交易策略。
多头对敲·多头straddle,行权价不错开,没有现货,一c一p都是多头。
异价跨式组合Strangle,行权价错开,一c一p都是多头。
双限期权collar,行权价错开,按CC和PP交易,但现货只留一份。
期初交易 | 期初现金流 | 期末价格对应现金流 | |
[0,10) | [10,+∞) | ||
long spot | -S0 | ST | ST |
short call | +C0 | 0 | -(ST-10) |
long put | -P0 | 10-ST | 0 |
revenue | -9.5 | 10 | 10 |
profit | 0.5 | 0.5 |
由题意,该投资者构建的是无风险组合。
由风险中性原理,rf=10/9.5-1=5.26%
//问:题中说不分红。如果分红,表格里的现金流怎么体现?
25
//25题,行权价错开,买看跌卖看涨,但是没有现货,就不算双限期权。错开行权价,P一买一卖,本例为熊市价差。
期初交易 | 期初现金流 | 期末价格对应现金流 | ||
[0,100) | [100,110) | [110,+∞) | ||
short put1 | +P1 | -(100-ST) | 0 | 0 |
long put2 | -P2 | 110-ST | 110-ST | 0 |
revenue | P1-P2 | 10 | 110-ST | 0 |
profit | < | < | < |
//问:第三题的贝塔,从哪来的?
//答:出题其实不严谨。用贝塔的协方差定义,假设市场就这一个股票,那么协方差是负的,贝塔也是负的。
26
1)这两种都是保护性看跌期权。
乔伊:基金跌破400时,总收益,400,利润400-20=380;超过400时,总收益ST,利润ST-20
萨利:基金跌破390时,总收益390,利润390-15=375;超过390时,总收益ST,利润ST-15
//一刷答案是有问题的,两条线不是往下平移的关系,不然无法在395处相交。
标答:
错误:(大家别学我)
2)
股价低于390时,乔伊的策略更好。
股价在390到395时,乔伊的策略更好;
395到400内,萨利的策略更好;
超过400时,萨利的策略更好。
3)
因为基金上涨空间无限而下跌空间有限,萨利的系统性风险更大。
//问:为啥这题问系统性风险?没给贝塔怎么刻画?
//答:考的不是CAPM/SML,也不是CML。和证券市场总体没关系,要回到第6/7章对系统性风险最原始的定义:n项资产的组合方差→平均协方差→系统性风险rho*sigma2
期权+股票的covered call也是n项资产的组合。此时不考虑宏观经济等CAPM才有的内容,仅考虑组合内的协方差问题。
如果看组合方差:股价从现在的400开始往下掉的时候,基金经理的组合,直接就开始跌了。但是原来自己的组合是可以再撑一阵的。说明了:基金经理的组合总体相对于投资者,波动更大。
如果看协方差:就是期权相对于股价的变动。跌破400就可以行权,显然比跌破390才能行权,更优。
27
1)该交易为熊市价差。
显然,X=50的看涨期权更贵,卖6元。
期初交易 | 期初现金流 | 期末价格对应现金流 | ||
<50 | 50,60 | >60 | ||
short call1x1 | +9 | 0 | -(ST-50) | -(ST-50) |
long call2x1 | -3 | 0 | 0 | ST-60 |
revenue | 6 | 0 | 50-ST | -10 |
profit | 6 | 56-ST | -4 |
2)
3)盈亏平衡点为56元。总体上,投资者看空这只股票,赌股价最高也只有56元。
28
根据组合价值走势及看涨期权行权价和现货价的关系,可反推出该组合的交易方向:
期初交易 | 期初现金流 | 期末价格对应现金流 | |||
<50 | 50,60 | 60,110 | >110 | ||
long spot | -ST | ST | ST | ST | ST |
short call1 | +C1 | 0 | -(ST-50) | -(ST-50) | -(ST-50) |
short call2 | +C2 | 0 | 0 | -(ST-60) | -(ST-60) |
long call 3 | -C3 | 0 | 0 | 0 | ST-110 |
revenue | C1+C2-C3-S0 | ST | 50 | 110-ST | 0 |
profit | ST-S0+C1+C2-C3 | 50+C1+C2-C3-S0 | 110-ST+C1+C2-C3-S0 | C1+C2-C3-S0 |
显然,有两个盈亏平衡点:
ST-53+C1+C2-C3=0→ST=53-C1-C2+C3
110-ST+C1+C2-C3-S0=0→ST=57+C1+C2-C3
这是投资者预测的到期日股价上下限。
//也可以按标答直接选利润最大的区间。题目只给股票现价,不给期权价格,是个很大的bug。
高级题
29
1)
收益函数图如下:
2)总体上看,策略二的收入更高,特别是在股价低于840元时。因此初始投入成本也不同。
call plus bill需要更高的成本。
3)首先作现金流分布表。
保护性看跌期权策略:
期初交易 | 期初现金流 | 期末价格对应现金流 | |
<780 | >780 | ||
long spot | -900 | ST | ST |
long put | -6 | 780-ST | 0 |
revenue | -906 | 780 | ST |
profit | -126 | ST-906 |
看涨期权加国债策略:
期初交易 | 期初现金流 | 期末价格对应现金流 | |
<840 | >840 | ||
long call | -120 | 0 | ST-840 |
long bill | -810 | 840 | 840 |
revenue | -930 | 840 | ST |
profit | -90 | ST-930 |
利润函数图如下:
由题意,到期日股价,及两种策略关于到期日股价的函数,服从以下分布律:
ST | 700 | 840 | 900 | 960 |
策略1利润 | -126 | -66 | -6 | 54 |
策略2利润 | -90 | -90 | -30 | 30 |
4)由3)可得策略1的波动幅度更大,因此风险更大、贝塔更高。
5)
//考察平价定理成立的前提。第一,欧式。第二,不分红。第三,行权价一样。第四,到期日相同。也就是影响期权价值的因素全部考察一遍,除了看涨看跌不一样,其他的都得一样。
看涨行权价为840,看跌行权价为780,根本不满足买卖权平价关系定理的前提,因此无法套用公式。
//错解:胡诌一通
不分红的欧式看涨看跌期权平价关系定理为
C+PV(X)=S+P
本例中,LHS为120+810=930,RHS为900+6=906.
看涨期权行权价840,现在已处于实值状态。看跌期权依然是虚值期权。
30
查表得X=125时,
S=127.21,P=2.44,C=4.75
由买卖权平价关系定理,PV(X)=(S+P-C)=127.21+2.44-4.75=124.9元
31
证明:不分红时,由买卖权平价关系定理,
C+PV(X)=S+P
移项得C-P=S-PV(X)=S-X/(1+r)^n①
由题意,两期权均处于平值状态,S=X②
②代入①得C-P=X(1-1/(1+r)^n)>0
故C>P
CFA题目
1
1)鉴于股价未来波动激烈,宜执行多头异价跨式期权交易策略。
2)
期初交易 | 期初现金流 | 期末价格对应现金流 | ||
[0,55) | [55,60) | [60,+∞) | ||
long put1 | -4 | 55-ST | 0 | 0 |
long call2 | -5 | 0 | 0 | ST-60 |
revenue | -9 | 55-ST | 0 | ST-60 |
profit | 46-ST | -9 | ST-69 |
最大损失为9元,出现在股价处于55-60元区间时。
股价跌至0元,最大获利46元;股价超过69元后,最大获利为无穷大。
盈亏平衡点为46元和69元。
2
1)equity index-linked note
投资人期末收入:发行价+基于股指表现的赎回补偿
2)commodity-linked bear bond
如果到期商品价格跌破买价,投资者就可以获得超过买价的收入;这是独立于息票支付的。因此,投资者可以收到的息票收入低于市场水平。
3
//要分清几个概念:
conversion price | 合约规定的每股转换价格,以债券面值计算 | 债券面值/转换比例 |
conversion value | 立即行权,得到的股票的市值 | PPS*转换比例 |
market conversion price | 按债券的市价计算,每股的转换价格 | 债券市价/转换比例 |
1)转换价值=22*40=880元
2)市场转换价格=1050/22=47.73元
错解:概念不清!
由转换比例得:市场转换价格conversion value=1000/22=45.45美元
4
1)市场转换价值=980/25=39.2元
//注意审题
转换价格=par value/conversion ratio=1000/25=4元
期望转换价值为45*25=1125元,说明债权人会选择行权。
可转债一年持有期收益率=(1125-980+40)/980=18.88%
普通股一年持有期收益率=(45+0-35)/35=28.57%
2)可转债价值=纯债券价值+期权价值
纯债券价值,指只考虑债券的本息支出的市场价值。期权价值,指的是考虑转股权利的价值。
//答题注意点出来这两个的定义是什么;对两个中间变量,两种场景都得对应讨论
因特尔股价上升,可转债期权价值会提升,对纯债券价格无影响。
公司普通债利率提升,可转债纯债券价格会下跌,而期权价值会提高。但二者大小关系不确定。
5
1)B
牛市价差
期初交易 | 期初现金流 | 期末价格对应现金流 | ||
[0,25) | [25,40) | [40,+∞) | ||
long call1 | -4 | ST-25 | ||
short call2 | +2.5 | -(ST-40) | ||
revenue | -1.5 | 15 | ||
profit | 13.5 |
2)A由定义选出