GEE:城市热岛效应分析


一、问题描述:

如何使用GEE分析城市热岛效应?获取城市区域温度较高的区域,并获取该区域的面积?

分析区域,选取北京市城区进行分析:
在这里插入图片描述


二、热岛效应

  • 热岛效应(Urban Heat Island Effect)是指一个地区的气温高于周围地区的现象。用两个代表性测点的气温差值(即热岛强度)表示。主要有城市热岛效应和青藏高原热岛效应两种。
  • 热岛效应是由于人为原因,改变了城市地表的局部温度、湿度、空气对流等因素,进而引起的城市小气候变化现象。该现象,属于城市气候最明显的特征之一。

1、定义

由于城市建筑群密集、柏油路和水泥路面比郊区的土壤、植被具有更大的吸热率和更小的比热容,使得城市地区升温较快,并向四周和大气中大量辐射,造成了同一时间城区气温普遍高于周围的郊区气温,高温的城区处于低温的郊区包围之中,如同汪洋大海中的岛屿,人们把这种现象称之为城市热岛效应。

在近地面等温线图上,郊区气温相对较低,而市区则形成一个明显的高温区,如同出露水面的岛屿,被形象的称之为“城市热岛”。城市热岛中心,气温一般比周围郊区高1℃左右,最高可达6℃以上,大城市散发的热量可以达到所接收的太阳能的2/5,从而使城市的温度升高。在城市热岛作用下,近地面产生由郊区吹向城市的热岛环流。城市热岛增强空气对流,空气中的烟尘提供了充足的水汽凝结核,故城市降水比郊区多。对欧美许多大城市研究发现,城市降水量一般比郊区多5%~10%。

在这里插入图片描述

2、成因

城市热岛效应主要由以下因素影响:蒸发减少、城市下垫面反射率降低、能量输入,其强度影响为:蒸发减少0.05g/sm,热输入增加120.9w/m;城市下垫面反射率降低10%,热输入增加30w/m;人工能量输入10w/m,城市中总热输入增加160.9w/m,由于受空气对流的影响,实际热输入约20w/m,计算温升约3.5℃,这与实际比较相符。当夏季空气流通减缓时,热输入会急剧增加,由于城市蒸发系统适应性低,造成城市温度急剧上升,同时由于空调和火电厂的加速运转又会造成恶性循环,加剧城市大气温升。城市蒸发量减少也形成了城市干岛效应,造成城市上空大气稳定度升高,不易发生垂直对流,易形成近地表高温,产生严重的空气污染(例发灰霾和光化学烟雾)。

在这里插入图片描述

3、危害

城市热岛效应是城市气候中典型的特征之一。它是城市气温比郊区气温高的现象。城市热岛的形成一方面是在现代化大城市中,人们的日常生活所发出的热量;另一方面,城市中建筑群密集,沥青和水泥路面比郊区的土壤、植被具有更小的函授比热容(可吸收更多的热量),并且反射率小,吸收率大,使得城市白天吸收储存太阳能比郊区多,夜晚城市降温缓慢仍比郊区气温高。城市热岛是以市中心为热岛中心,有一股较强的暖气流在此上升,而郊外上空为相对冷的空气下沉,这样便形成了城郊环流,空气中的各种污染物在这种局地环流的作用下,聚集在城市上空,如果没有很强的冷空气,城市空气污染将加重,人类生存的环境被破坏,导致人类发生各种疾病,甚至造成死亡。

在这里插入图片描述


三、城区里温度较高的区域分析

1、分析步骤

分析步骤如下所示:

加载影像
选择温度范围
温度转换
城市高温区域
成片热岛区域
热岛面积分析

2、加载数据并显示

python代码如下:

image = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_123032_20210907')
# Map.addLayer(image, {'min':5000, 'max':15000, 'bands':['SR_B7', 'SR_B6', 'SR_B2']}, 'image')
image_clip = image.clip(roi)
# C02数据的标度转换
image_roi = image_clip.select('ST_B10').multiply(0.00341802).add(149)
# 转换为摄氏度(-273.5),筛选出大于35℃的区域
hotspots = image_roi.subtract(273.5).gt(35).selfMask().rename('hotspots')
Map.add_basemap()
Map.addLayer(hotspots, {'palette':'gray'}, 'hotspots')

结果显示如下:
在这里插入图片描述

# 每个区域(斑块)中的像素数,按照周边最多100个像素数的斑块统计,8向连接
patchsize = hotspots.connectedPixelCount(100, True)
Map.addLayer(patchsize, {'palette':'yellow'}, 'patchsize')
Map

结果显示如下:
在这里插入图片描述

# 成片斑块区域
large_patches = patchsize.gt(20)
large_patches = large_patches.updateMask(large_patches)
Map.addLayer(large_patches, {'palette':'red'}, 'patches>4')
Map

结果显示如下:
在这里插入图片描述

四、城市热岛区域面积提取

  • ee.Image.pixelArea()
    生成一个图像,其中每个像素的值是该像素的面积,以平方米为单位。返回的图像有一个称为“区域”的带。
    在这里插入图片描述
  • ee.Image.connectedPixelCount()
    生成一个图像,其中每个像素包含 4 或 8 个连接的邻居(包括其自身)的数量。
    在这里插入图片描述
  • ee.Image.connectedComponents()
    查找与输入的第一个波段具有相同值的连通分量,并用全局唯一值标记它们。连通性由给定的内核指定。大于 maxSize 的对象被视为背景,并被屏蔽。
    在这里插入图片描述
    python代码如下:
# 使用pixelArea()函数,Generate an image in which the 
# value of each pixel is the area of that pixel in square meters. 
# The returned image has a single band called "area."
pixelAreaAllPatches = hotspots.multiply(ee.Image.pixelArea())
pixelAreaLargePatches = large_patches.multiply(ee.Image.pixelArea())
AreaAllPatches = pixelAreaAllPatches.reduceRegion(**{
    'reducer':ee.Reducer.sum(),
    'geometry':roi
})
AreaLargePatches = pixelAreaLargePatches.reduceRegion(**{
    'reducer':ee.Reducer.sum(),
    'geometry':roi
})

# 获取面积
print('All the pathches area:', AreaAllPatches.getInfo())
print('The large patches area:', AreaLargePatches.getInfo())

结果显示如下:
All the pathches area are: {‘hotspots’: 78300179.11268622}
The large patches area are: {‘hotspots’: 73151637.55642593}


五、学习小结:

  1. 学习了区域成片斑块的分析方法。以城市热岛效应为例,对于城市热岛区域、集中连片的区域进行提取分析,获取其分布范围
  2. 掌握GEE中栅格影像空间区域面积的分析方法

参考:

  • https://github.com/giswqs/earthengine-py-notebooks/blob/master/Image/image_patch_area.ipynb
  • https://baike.baidu.com/item/%E7%83%AD%E5%B2%9B%E6%95%88%E5%BA%94/293720?fr=aladdin
  • https://developers.google.com/earth-engine/apidocs/ee-image-connectedcomponents?hl=en
### 回答1: GEE (Google Earth Engine) 是一个在线的遥感影像处理平台,其中包含了一系列用于处理遥感影像的工具和算法。 要计算岛强度,首先需要获取相关的遥感影像数据,并对其进行预处理,以提取有用的信息。然后,可以使用岛指数(例如NDVI)对影像进行分析,以评估岛强度。 以下是一份 GEE 代码示例,可以计算岛强度: ``` // Load a Landsat 8 image. var image = ee.Image('LANDSAT/LC08/C01/T1_TOA/LC08_044034_20140608'); // Compute the Normalized Difference Vegetation Index (NDVI). var ndvi = image.normalizedDifference(['B5', 'B4']).rename('NDVI'); // Display the NDVI image. Map.addLayer(ndvi, {min: 0, max: 1, palette: ['FF0000', '00FF00']}, 'NDVI'); // Create a histogram of NDVI values. var histogram = ui.Chart.image.histogram({ image: ndvi, region: image.geometry(), scale: 30, maxPixels: 1e9 }); // Display the histogram. print(histogram); ``` 在此代码中,我们首先加载了一个 Landsat 8 影像,然后使用 `normalizedDifference` 方法计算了 NDVI。最后,通过图形显示 NDVI 图像并创建 NDVI 值的直方图。 ### 回答2: 岛强度(Urban Heat Island Intensity,简称UHI)是指城市地区相比周围乡村地区温度上升的差异。它是城市化过程中产生的一个现象,主要原因是城市地表的硬质化、建筑物和道路的惯性、垃圾污染等因素导致大量把太阳辐射转换为量的过程。 Gee是一个方便的工具,可以使用它来计算岛强度。首先,需要获取相关的气象数据,如日均温度和大气湿度。这些数据可以通过气象站、卫星遥感或模式模拟获得。 然后,将获取到的气象数据输入到Gee的代码中,进行数据处理和分析。可以使用Gee提供的图像集合和数据集,通过编写JavaScript代码,对每个城市地区和其周围乡村地区进行温度差异的计算。 计算岛强度的代码可以采用以下步骤: 1. 在Gee中导入气象数据集,并选择感兴趣的城市地区和其周围乡村地区的范围。 2. 对每个城市地区和其周围乡村地区的气象数据进行时间序列分析,计算每天的平均温度。 3. 分别计算城市地区和其周围乡村地区的平均温度差异。 4. 确定计算岛强度的时间尺度,例如每天、每周、每月或每年。 5. 根据所选择的时间尺度,计算岛强度的平均值和标准差。 6. 可以使用柱状图、折线图等可视化工具,将岛强度的结果展示出来。 除了计算岛强度,Gee还可以进行其他的分析,如确定岛形成的主要原因、模拟城市化对岛的影响等。 综上所述,使用Gee计算岛强度的代码需要导入气象数据集、对城市地区和其周围乡村地区的温度差异进行计算和分析,最终展示出岛强度的结果。 ### 回答3: 岛效应是指城市及其周边地区的温度比周边农村和郊区地区高的现象。为了定量评估城市的岛效应强度,可以使用GEE(Geographical Environment Engineering)中的一些计算方法和代码。 首先,需要获取所研究城市及周边地区的温度数据集。可以利用卫星遥感数据或者地面气象站的实测数据。数据集需要包含城市和农村/郊区的温度信息,通常应包含多个时段的数据。 接下来,需要使用GEE中提供的计算方法计算岛强度。其中一种常用的方法是计算城市和农村/郊区的温度差异。可以按照以下步骤操作: 1. 将城市和农村/郊区的温度数据分别提取出来。 2. 对温度数据进行空间插值,将数据在同一空间分辨率上进行比较,确保数据一致性。 3. 计算城市和农村/郊区每个像素点的温度差,得到温度差的数据集。 4. 对得到的温度差数据集进行统计分析,例如计算平均温度差、最大温度差等指标。 5. 根据统计结果,可以综合各指标得出岛强度的评估值。 需注意的是,以上只是一种基本的计算方法。实际应用中,还可以根据研究的要求,加入其他因素,如地表覆盖、建筑密度等,以获得更为准确的岛强度评估值。 总之,利用GEE中的计算方法和代码,可以对城市的岛效应进行定量评估。通过分析城市和农村/郊区的温度差异,可以得到岛强度的评估值,为城市规划和环境改善提供科学依据。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值