基于Landsat8/TIRS的北京城市热岛研究(附练习数据下载)

本文介绍了使用Landsat8/TIRS数据进行北京城市热岛效应的研究过程,包括数据预处理、土地覆盖分类、辐射定标、地表温度计算和城市热岛效应分析。通过ENVI和arcmap软件,进行了监督分类、比辐射率和大气透过率计算,最终得出地表温度和城市热岛强度(SUHI)分布情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

请添加图片描述
1.实验目的和内容

1.1 实验目的
基于Landsat8/TIRS数据反演地表温度,在此基础上研究北京城市热岛效应。掌握Landsat8数据的亮度温度计算、比辐射率计算、地表温度反演以及城市地表热岛分析等内容。

1.2实验数据

  1. 北京市行政区划数据
  2. 2017年7月北京市Landsat8数据
    文末有练习数据下载

1.3 实验内容
1.数据预处理
2.土地覆盖分类
3.辐射定标与亮温计算
4.地表比辐射率计算
5.大气透过率计算
6.地表温度计算
7.城市热岛效应分析

2.实验内容

2.1数据预处理
在ENVI中将数据转换为.tif格式后在arcmap里面进行进行镶嵌、裁剪、掩膜处理后如下图所示:请添加图片描述
图 1:北京市镶嵌掩膜后OLI数据

2.2土地覆盖分类

2.2.1地物特征的选取
由于提供的OLI数据分辨率低、地物模糊、可识别度低,为此我在arcmap软件中使用了在线地图小插件对比地物进行建筑、裸地、水体、林地和农田这5大类地物训练区的划分,如下图所示:请添加图片描述
图 2:地物特征选取过程图

2.2.2监督分类
将采集的地物特征训练数据输出为特征文件*.GSG,并且采用最大拟然分类进行对北京土地覆盖的监督分类,最后进行符号化后制图输出,如下图所示:
请添加图片描述
图 3:北京市土地覆盖分类结果图

2.3辐射定标与亮温计算

使用波段运算公式“3.34420E-04*b1+0.1”先计算得到TIRS第1、2波段的辐射亮度然后继续使用波段运算公式分别运算得到TIRS第一波段和第二波段的亮度温度。

2.4地表比辐射率计算

2.4.1计算植被覆盖度
使用波段运算公式“(float(b5)-b4)/(float(b5)+b4)”计算北京市NDVI指数。接着计算NDVI数据统计直方图,掩膜数据为北京市范围,读取出各年份累积频率为5%和95%的NDVI值分别作为裸植被像元NDVIv和纯植被像元NDVI0,使用波段

<think>好的,我现在需要帮助用户了解如何在ENVI中进行NDWI-NDVI特征空间拟合。首先,用户之前询问了当无法获取LST时替代TVDI的方法,其中提到了NDWI-NDVI特征空间法。现在用户想具体知道如何在ENVI中实现这一步骤。 我需要回顾之前的回答,确保这次的信息连贯。用户可能已经按照之前的建议选择了NDWI和NDVI,现在需要操作指导。用户可能是遥感领域的学生或研究人员,具备一定的ENVI使用基础,但需要具体的步骤说明。 首先,我需要分解ENVI中的操作流程:数据准备、计算NDVI和NDWI、创建散点图、拟合干湿边、生成干旱指数。每一步需要详细说明,包括如何选择波段,计算公式,以及如何提取干湿边的方程。 用户可能遇到的问题包括波段选择错误,尤其是在不同卫星数据(如Landsat 8和Sentinel-2)中波段编号不同,需要明确举例。此外,散点图分析中的干湿边识别可能需要解释如何根据数据分布选择极端值。 需要确保术语准确,比如“特征空间”即散点图,干湿边是特征空间的上下边界。在拟合过程中,可能需要线性或非线性回归,但通常使用线性拟合,需说明如何获取斜率和截距。 最后,生成干旱指数时,要解释公式中各个参数的含义,并提醒用户需要实地数据验证。用户可能需要进一步的实际操作帮助,比如代码示例,但当前问题集中在ENVI操作,所以保持步骤的实用性。 需要检查是否有遗漏步骤,例如数据预处理(辐射定标、大气校正),这些对指数计算至关重要,应该包含在准备工作中。此外,导出结果和验证步骤也是关键,确保用户了解整个流程。 总结:需分步骤详细说明,注意不同数据源的波段差异,强调预处理的重要性,并提供实际例子(如Landsat 8的波段编号),确保用户能跟随操作。同时,提示可能遇到的问题和验证方法,增强回答的实用性。</think>$\boxed{\text{ENVI中NDWI-NDVI特征空间拟合步骤}}$ 以下为基于Landsat 8/Sentinel-2数据的详细操作流程,通过NDWI与NDVI构建干旱监测特征空间: --- ### **一、数据准备** 1. **数据预处理** - 完成辐射定标(Radiance或Reflectance) - 进行大气校正(推荐FLAASH或Sen2Cor) - 确保研究区云量低于10%(可通过ENVI的`Cloud Mask`工具处理) 2. **波段对应表** | 指数 | Landsat 8 波段 | Sentinel-2 波段 | |--------|----------------|------------------| | NDVI | B5(NIR), B4(Red) | B8(NIR), B4(Red) | | NDWI | B3(Green), B6(SWIR1) | B3(Green), B11(SWIR) | --- ### **二、计算NDVI与NDWI** 1. **NDVI计算** - 打开`Band Math`工具,输入公式: $$ \text{NDVI} = \frac{\text{B5} - \text{B4}}{\text{B5} + \text{B4}} $$ (Landsat 8为例,注意数据类型设为浮点) 2. **NDWI计算** - 再次使用`Band Math`,输入公式: $$ \text{NDWI} = \frac{\text{B3} - \text{B6}}{\text{B3} + \text{B6}} $$ (对Sentinel-2替换为B3和B11) 3. **结果保存** - 将NDVI和NDWI结果保存为`.dat`文件(建议命名`NDVI_img`和`NDWI_img`) --- ### **三、创建特征空间散点图** 1. **加载数据** - 同时打开NDVI和NDWI图像,确保空间范围一致 2. **启动散点图工具** - 菜单路径:`Display > 2D Scatter Plot` - 设置X轴为**NDVI**,Y轴为**NDWI** 3. **调整显示参数** - 设置采样率(建议10%随机采样防止卡顿) - 调整颜色映射(`Color Table`选择热度图以突出密集区) --- ### **四、拟合干湿边方程** 1. **提取特征空间边界** - 手动选取干湿边样本点: - **湿边**:NDWI最大值对应区域(右键点击散点图右上角密集区,选择`Export Points`) - **干边**:NDWI最小值对应区域(左下角低NDVI-低NDWI区域) - 或使用自动提取(需编写IDL代码): ```idl ; 湿边:取NDWI最高5%的NDVI分箱均值 wet_edge = stats(NDVI[NDWI > percentile(NDWI, 95)]) ; 干边:取NDWI最低5%的NDVI分箱均值 dry_edge = stats(NDVI[NDWI < percentile(NDWI, 5)]) ``` 2. **线性回归拟合** - 对湿边和干边分别进行最小二乘拟合: $$ \text{NDWI}_{\text{wet}} = a_{\text{wet}} \cdot \text{NDVI} + b_{\text{wet}} $$ $$ \text{NDWI}_{\text{dry}} = a_{\text{dry}} \cdot \text{NDVI} + b_{\text{dry}} $$ - 在ENVI中操作: - 导出湿边样本点为CSV,用`Basic Tools > Statistics > Compute Statistics`计算斜率和截距 - 或使用`Regress`工具(需安装ENVI扩展包) --- ### **五、计算干旱指数** 1. **构建干旱指标公式** - 在`Band Math`中输入: $$ \text{Drought\_Index} = \frac{\text{NDWI} - (a_{\text{wet}} \cdot \text{NDVI} + b_{\text{wet}})}{(a_{\text{dry}} \cdot \text{NDVI} + b_{\text{dry}}) - (a_{\text{wet}} \cdot \text{NDVI} + b_{\text{wet}})} $$ 2. **参数替换** - 将实际拟合的$a_{\text{wet}}, b_{\text{wet}}, a_{\text{dry}}, b_{\text{dry}}$代入公式 - 示例(假设拟合结果): ```idl Drought_Index = (NDWI - (-0.8*NDVI + 0.4)) / ((-0.2*NDVI - 0.1) - (-0.8*NDVI + 0.4)) ``` 3. **结果分类** - 使用`Color Slice`工具划分干旱等级(建议分5级:湿润[0-0.2]、正常[0.2-0.4]、轻度干旱[0.4-0.6]、中度干旱[0.6-0.8]、重度干旱[0.8-1]) --- ### $\triangle$ **关键注意事项** 1. **数据一致性**:NDVI和NDWI必须来自同一时相、同一传感器 2. **异常值处理**:散点图中剔除云、水体等干扰点(可通过NDWI阈值预先掩膜) 3. **验证方法**:建议使用同期土壤湿度实测数据或气象干旱指数(如SPI)进行相关性分析 若需要自动化脚本,可参考以下IDL代码框架: ```idl pro fit_ndwi_ndvi ; 加载NDVI和NDWI图像 ndvi = e.open_raster('NDVI.dat') ndwi = e.open_raster('NDWI.dat') ; 提取干湿边样本 wet_mask = ndwi gt percentile(ndwi, 95) dry_mask = ndwi lt percentile(ndwi, 5) ; 线性拟合 wet_coef = regress(ndvi[wet_mask], ndwi[wet_mask]) dry_coef = regress(ndvi[dry_mask], ndwi[dry_mask]) ; 计算干旱指数 drought_index = (ndwi - (wet_coef[0]*ndvi + wet_coef[1])) / $ ((dry_coef[0]*ndvi + dry_coef[1]) - (wet_coef[0]*ndvi + wet_coef[1])) ; 输出结果 e.output_raster(drought_index, 'Drought_Index.dat') end ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值