布雷默曼极限 (Bremermann‘s limit)

布雷默曼极限是基于爱因斯坦的质能等价和海森堡不确定性原理设定的计算速率上限,对于密码学至关重要。它定义了物质系统能进行的最大计算次数。例如,一个拥有地球质量的计算机在该极限下每秒可执行的运算次数,可用于估算不同密钥长度被破解所需的时间,如128位密钥在极短时间内可被破解,而256位密钥则需要约两分钟,512位密钥破解则需近乎永恒的时间。量子计算的发展可能会影响这一极限,允许更快的计算速度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以汉斯-约阿希姆·布雷默曼(Hans-Joachim Bremermann)的名字命名的布雷默曼极限(Bremermann‘s limit)是对物质宇宙中自成体系的最大计算速率的极限。它是根据爱因斯坦的质能当量和海森堡不确定性原理得出的,为c^{2}/h\approx1.36\times10^{50}位(bits)每秒每千克。该值在设计密码算法时很重要,因为它可用于确定创建永远不会被蛮力搜索破解的算法所需的最小加密密钥或哈希值。

例如,一台具有整个地球质量在布雷默曼极限下运行的计算机,每秒可以执行大约10^{75}次数学计算。如果假设只用一次操作就可以测试一个加密密钥,那么一个典型的128位密钥可能会在10-36秒内被破解。但是,一个256位密钥(在某些系统中已经在使用)需要大约两分钟的时间才能破解。使用512位密钥将使破解时间增加到接近1072年,而不会将加密时间增加超过一个恒定因子(取决于所使用的加密算法)。

此限制已在后来的文献中作了进一步分析,它是能量散布的系统\Delta E可以演变为正交状态,从而与另一个相区别\Delta t=\frac{\pi\hbar}{2\Delta E}。特别地,Margolus和Levitin已经证明(Margolus-Levitin theorem),具有平均能量E的量子系统至少需要时间\Delta t=\frac{\pi\hbar}{2E}演变为正交状态,或者说最高处理速度为6\times10^{33}/s/J。但是,已经显示出,原则上访问量子内存可以使计算算法的每一基本计算步骤所需的能量/时间任意少。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值