科研笔记_热力学·统计物理学
文章平均质量分 86
teengad
这个作者很懒,什么都没留下…
展开
-
不可分解分布(Indecomposable distribution)与无限可分性(infinite divisibility)
在概率论中,不可分解分布(indecomposable distribution)是不能表示为两个或多个非常数独立随机变量(non-constant independent random variables)之和的分布的概率分布:Z≠X+YZ\neq X+YZ=X+Y。如果可以这样表示,则它是可分解的(decomposable):Z=X+YZ = X + YZ=X+Y。进一步,如果它可以表示为两个或多个独立同分布的随机变量之和的分布,则它是可分的(divisible):Z=X1+X2Z = X_{1} +原创 2023-04-17 00:57:31 · 1059 阅读 · 0 评论 -
生存函数(Survival function)
设生命周期TTT为区间0∞[0,\infty)0∞上具有累积分布函数FtF(t)Ft和概率密度函数ftf(t)ft的连续随机变量。StPTt∫t∞fudu1−FtStP({Tt})∫t∞fudu1−Ft让τ≥0τ≥0是一个随机变量,我们将其视为感兴趣事件发生之前的时间。如上所述,目标是估计在τ\tauτ下的生存函数SSS。原创 2023-04-16 23:59:38 · 7651 阅读 · 0 评论 -
概率质量函数(Probability mass function)
是给出离散随机变量恰好等于某个值的概率的函数。有时也称为离散密度函数(discrete density function)。概率质量函数通常是定义离散概率分布的主要方法,此类函数存在于域离散的标量或多元随机变量中。)的不同之处在于后者与连续而非离散的随机变量相关联。PDF 必须在一个区间内积分才能产生概率。具有最大概率质量的随机变量的值称为众数(在概率和统计中,概率质量函数(概率质量函数与概率密度函数(原创 2023-01-17 15:08:43 · 4240 阅读 · 0 评论 -
能量景观(Energy landscape)
图 世界社会经济系统的简化能量景观,和不同细节层次的社会倾斜的动态(social tipping dynamics),突出影响转变的因素能源景观(energy landscape)是系统可能状态的映射。这个概念经常用于物理、化学和生物化学,例如。描述分子实体的所有可能构象,或系统中相互作用分子的空间位置,或参数及其相应的能级,通常是吉布斯自由能。在几何上,能量景观是跨系统构型空间()的能量函数图。当损失函数的域是某个系统的参数空间时,该术语也更普遍地用于几何角度的数学优化研究。原创 2022-10-16 00:01:49 · 3966 阅读 · 1 评论 -
兰道尔原理(Laudauer‘s Principle)
推到所需先验知识:系统的m个微观态都是等概率时,香农熵(信息熵)计算公式:系统的m个微观态都是等概率时,热力学熵计算公式:(注:k是玻尔兹曼常数)信息熵和信息的关系:消除信息熵=获取信息如上图,设想一个热力学熵为S的气罐,里面只有一个气体分子。若将气罐分成W1个小空间,该分子则有W1个可能位置,分子的每个可能位置都被视为一个微观状态(microstate)。整个气罐有W1个微观状态,因此半个气罐有W2=W1/2个微观状态。如图,则整个气缸的微观状态数为8个,半个气缸的微观状态数为4个原创 2021-03-20 00:35:42 · 1647 阅读 · 0 评论 -
热水结冰比冷水快?半世纪争议终于解开
热水结冰的速度,比冷水快吗?这个看似简单的问题,答案应该是「不会」(吧?)然而,科学家超过半世纪以来,经过数千次实验、观察与辩证,今年8月终于有科学家利用最简单的实验设计,在密切控制的条件之下,证实等量的热水会比等量的冷水还快结冰。做冰淇淋抢快,意外发现争议半世纪的有趣现象这种反常现象被称作「彭巴效应」(Mpemba effect),以1963年观察到此现象的东非国家坦尚尼亚的中学生艾拉斯托‧彭巴(Erasto Mpemba)姓氏命名。彭巴当时在学校烹饪课制作冰淇淋时,原本应要依老师指示将牛奶加转载 2021-04-10 19:23:43 · 1128 阅读 · 0 评论 -
自旋玻璃(spin glass)、自旋冰(spin ice)和量子自旋液体(quantum spin liquid)(之二)
具有相同电荷的电子相互排斥。结果,为了在极其拥挤的环境中相互超越,他们不得不改变自己的行为。剑桥大学和英国伯明翰大学于 2009 年 7 月发表的研究表明,电子可以通过量子隧穿从金属表面跳到相近位置的量子线上,这样做后,将分离成两个准粒子,命名为的自旋子和全子。Van den Brink、Khomskii 和 Sawatzky 在 1997-1998 年对轨道子进行了理论上的预测。在 2011 年 9 月发给出版商的论文中报告了它作为一个单独的准粒子的实验观察结果。原创 2022-10-08 21:58:29 · 9650 阅读 · 1 评论 -
玻璃及玻璃转变(Glass transition)
玻璃是一种非结晶的,通常是透明的非晶态固体,它有广泛的实用,技术和装饰用途,例如,在窗玻璃,餐具和光学。玻璃通常是通过熔融形式的快速冷却(淬火)而形成的;有些玻璃如火山玻璃是自然形成的。最熟悉的,也是历史上最古老的人造玻璃类型是“硅酸盐玻璃”,这种玻璃基于化合物二氧化硅(二氧化硅或石英),是沙子的主要成分。钠钙玻璃含有约 7070%70 的二氧化硅,约占人造玻璃的 9090%90。尽管无硅玻璃在现代通信技术中通常具有理想的应用性能,但在流行用法中,玻璃这个术语通常只用于指这种类型的材料。有些物品,如水杯和眼原创 2022-10-04 02:15:12 · 7622 阅读 · 0 评论 -
有序与无序(Order and disorder)
在物理学中,术语有序(order)和无序(disorder)表示多粒子系统中是否存在某种对称性(symmetry)或相关性(correlation)。在凝聚态物理学中,系统通常在低温下进行排序。加热后,它们会经历一个或几个相变,变成不太有序的状态。有序或无序的自由度可以是平移(晶体有序(crystalline ordering))、旋转(铁电有序(ferroelectric ordering))或自旋态(磁有序(magnetic ordering))。原创 2022-10-03 23:19:06 · 5292 阅读 · 0 评论 -
平均场理论(Mean-field theory)
在物理学和概率论中,平均场理论(Mean-field theory,MFT)或自洽场理论(Self-consistent field theory)通过研究一个更简单的模型来研究高维随机(随机)模型的行为,该模型通过对自由度(统计量的最终计算中的值可以自由变化)的平均来逼近原始模型。此类模型考虑了许多相互作用的单个组件。平均场理论的主要思想是用平均或有效的相互作用(有时称为分子场(molecular field))代替对任何一个物体的所有相互作用。这将任何多体问题简化为有效的单体问题。原创 2022-10-03 19:55:40 · 14025 阅读 · 0 评论 -
自旋玻璃(spin glass)、自旋冰(spin ice)和量子自旋液体(quantum spin liquid)(之一)
帕里西于 1948 年出生于意大利罗马,爷爷和父亲都是建筑工人,因此家族曾希望他将来做一名工程师。然而,青少年时代的帕里西喜爱阅读科学书籍,被书中复杂的抽象知识所深深吸引。鉴于 20 世纪中叶物理学的蓬勃发展,他决定研究物理,并且深信自己有能力去解决一个具有挑战性的物理问题。大学时,他成为粒子物理学家卡比博(N. Cabibbo)的学生。卡比博因发现“卡比博角”闻名于世,也称得上是诺贝尔奖级别的大师。帕里西后来回忆,他的导师是那个时代罗马最聪明的理论物理学家。原创 2022-09-27 00:54:19 · 6512 阅读 · 7 评论 -
动力学(dynamics)与动理学(kinetics)概念辨析
比如星系中的恒星和星际介质中的尘埃的动力学就可以用动理学方法描述,因为恒星之间的自由程比星系尺度还大,而尘埃的自由程和星系尺度差不多,两者都不能用流体假设,但是用动理学就很好用。用到的处理方法感觉最常用的解析的方法还是线性化方法和信号响应理论了,因为方程非线性太强了,所以要得到具体的动力学演化都是上计算机模拟。动理学方法和流体力学方法都是研究多粒子体系(固液气、等离子体等)物理性质的理论工具,但动理学方法与流体力学方法的三维坐标空间描述不同,它通常是在六维的“坐标-速度”空间来描述,而且还可以扩展到。原创 2022-09-24 01:55:01 · 8835 阅读 · 0 评论 -
连续时间随机游走(Continuous-time random walk, CTRW)
在数学中,连续时间随机游走(Continuous-time random walk, CTRW)是随机游走的推广,其中游荡粒子在跳跃之间等待随机时间。这是一个随机跳跃过程,跳跃长度和等待时间分布任意。更一般地说,它可以看作是马尔可夫更新过程()的一个特例。CTRW 由 Montroll 和 Weiss 引入,作为物理扩散过程的推广,以有效描述异常扩散(anomalous diffusion),即超扩散和亚扩散情况(super- and sub-diffusive cases)。原创 2022-09-21 00:35:55 · 2460 阅读 · 0 评论 -
变分(Calculus of variations)的概念及运算规则(一)
在介绍变分之前,首先回顾微分的定义当自变量x→x+dxx→x+dx时,相应的因变量y→y+dyy→y+dy。则此时dydy就是函数y(x)y(x)y(x)的微分了。原创 2022-07-25 03:55:21 · 40889 阅读 · 15 评论 -
为何恒星/太阳(辐射)可以被视为黑体(辐射)?
首先恒星并不能被视为黑体的理由要比能被视为黑体的理由更简单,首先我们回顾黑体和黑体辐射的定义:黑体或黑体是一种理想化的物理体,它吸收所有入射电磁辐射,无论频率或入射角如何。之所以命名为“黑体”,是因为它吸收所有颜色的光。黑体也发射黑体辐射。处于热平衡状态(即处于恒定温度)的黑体会发射电磁黑体辐射。辐射是根据普朗克定律发射的,这意味着它的光谱仅由温度决定,而不是由身体的形状或成分决定。处于热平衡状态的理想黑体具有两个主要特性:黑体的概念最初是由 Gustav Kirchhoff 在 1860 年提出的,如下原创 2022-08-29 23:57:43 · 6538 阅读 · 0 评论 -
统计物理中“无用”的过渡量
在统计物理理论中,有很多物理量被规定了,但是最终在实用的时候并没有被用到,即没有出现在最终的结果中,这些量只在理论模型的推导中起作用,其量一般无法确定,在推导的最后还会被约掉,仿佛这个物理量只是为了起一个“过渡”作用。这是很有意思的一点,因为在很多理论的发展中都会有这样的脚手架一般的量,用的时候则用,不用的时候则舍弃掉。难道这代表了一种物理的抽象结构?为何很多量会被约掉?这代表着什么呢?通过下述案例的积累,希望最终能够找到一定规律性的东西。......原创 2022-08-26 23:43:32 · 260 阅读 · 0 评论 -
变分(Calculus of variations)的概念及运算规则(二)
在变分法和经典力学中,欧拉-拉格朗日方程是一个二阶常微分方程组,其解是给定作用泛函的驻点。这些方程是在 1750 年代由瑞士数学家 Leonhard Euler 和意大利数学家 Joseph-Louis Lagrange 发现的。因为可微泛函在其局部极值处是静止的,所以欧拉-拉格朗日方程可用于解决优化问题,在这些问题中,给定一些泛函,人们寻求函数使其最小化或最大化。这类似于微积分中的费马定理,指出在可微函数达到局部极值的任何点,其导数为零。在拉格朗日力学中,根据汉密尔顿的静止作用原理,物理系统的演化是由系统原创 2022-08-26 13:21:57 · 3232 阅读 · 1 评论 -
瑞利-贝纳尔对流(Rayleigh–Bénard convection)
由对流现象说开去,不难看出,对流实际上来自系统复杂的空间组织,数以亿万计的分子协调一致地运动,形成了具有某些特征尺寸的六角形对流胞,从结构角度,显然是从一个没有结构的一层液体,突然出现一个规则的动态结构——对流胞的结构,表明了非平衡突变的突出特征。,所以流出的熵大,流入的熵小,如果流走的熵量超过了系统内部熵的产生,可以导致系统内熵的减少。并且,瑞利数越大,促进了不稳定的因素,为对流的形成创造有利条件,随着热量的流进流出,熵也在变化,流进的熵与流出的熵不等,流入的熵。诸如,沸腾的汤锅,烟囱口的“热风”;原创 2022-08-20 10:41:18 · 8416 阅读 · 4 评论 -
自学脚手架——《热学》 by 李椿(第一,二,三,四,五章)
平衡态需要同时达成力学平衡,热学平衡,化学平衡。公式中的物理量为斜体,单位及量纲为正体,下标如果为物理量则为斜体,描述性的词为正体。如果一个量是无量纲的量,称为常数,有量纲的量称为常量。在现有的含有两个参量的非理想气体物态方程中,精确度最高的是雷德利克-邝方程:{p+a/[T2ν(ν+b)]}⋅(ν−b)=RT\{p+a/[T^{2}\nu(\nu+b)]\}\cdot (\nu-b)=RT{p+a/[T2ν(ν+b)]}⋅(ν−b)=RT此方程中的ppp、TTT、ν\nuν分别是气体的压强、热力学温度原创 2022-07-11 00:38:07 · 698 阅读 · 0 评论 -
不精确微分/不完整微分(Inexact differential/Imperfect differential)
不精确微分δu\deltauδu是在一些具有相同端点的两条路径上的积分不同的微分。具体来说,存在可积路径γ1γ1,γ2γ2[0,1]→R[0,1]→R使得γ1(0)=γ2(0)γ1(0)=γ2(0),γ1(1)=γ2(1)γ1(1)=γ2(1),和∫γ1δu≠∫γ2δu∫γ1δu=∫γ2。..................原创 2022-08-02 00:10:12 · 2429 阅读 · 1 评论 -
熵力(entropic force)
在物理学中,作用于系统中的熵力(entropicforce)是由整个系统增加熵的统计趋势引起的一种涌现现象(emergentphenomenon),而不是原子尺度上的特定潜在力(particularunderlyingforce)引起的。原创 2022-08-01 00:07:44 · 2202 阅读 · 0 评论