科研笔记
文章平均质量分 70
teengad
这个作者很懒,什么都没留下…
展开
-
国内纵向科研项目梳理
这较以前是个重要的改变。国家重点研发计划由原来的国家重点基础研究发展计划(973计划)、国家高技术研究发展计划(863计划)、国家科技支撑计划、国际科技合作与交流专项、产业技术研究与开发基金和公益性行业科研专项等整合而成,是针对事关国计民生的重大社会公益性研究,以及事关产业核心竞争力、整体自主创新能力和国家安全的战略性、基础性、前瞻性重大科学问题、重大共性关键技术和产品,为国民经济和社会发展主要领域提供持续性的支撑和引领。重点专项通常聚焦于解决国家在某些关键领域的重大科技需求,属于国家重点研发计划的子集。原创 2024-08-28 20:45:35 · 1235 阅读 · 0 评论 -
中科院JCR期刊分区介绍
中科院JCR期刊分区(又称分区表、分区数据)是中国科学院文献情报中心世界科学前沿分析中心的科学研究成果。分区表设计的思路始于2000年之初,旨在纠正当时国内科研界对不同学科期刊影响因子数值差异的忽视。自2004年发布之后,分区表为我国科研、教育机构的管理人员、科研工作者提供了一份评价国际学术期刊影响力的参考数据,得到了全国各地高校、科研机构的广泛认可。原创 2024-04-20 20:30:13 · 1441 阅读 · 0 评论 -
Reading Scientific Papers by Dr. Robert David Siegel
从概念上讲,这些汇编与《当前内容》类似。然而,在这种情况下,它们的出版频率较低,它们不仅包含文章的标题,而且还包含摘要或概要。原创 2023-06-16 18:24:16 · 755 阅读 · 0 评论 -
自指(Self-reference)
自我参照(Self-reference)是一个涉及指代自己或自己的属性、特征或行为的概念。它可以发生在语言、逻辑、数学、哲学和其他领域。在自然语言或形式语言中,当句子、想法或公式指代自身时,就会发生自指。引用可以直接表达——通过一些中间句子或公式——或者通过某种编码。在哲学上,自指也指主语说出或指称自己的能力,即具有英语中第一人称单数主格“我”所表达的那种思想。自指在数学、哲学、计算机编程、二阶控制论、语言学以及幽默中得到研究和应用。自引用语句有时是自相矛盾的,也可以认为是递归的。原创 2023-03-08 19:03:54 · 2744 阅读 · 0 评论 -
北大本科小妹妹:在北大“卷”了三年,才明白的四个道理…
大一上学期的时候,我上了一门课叫计算概论,是教 C 语言的,坦白来讲这是我并不擅长的东西,我是花了非常大的努力才最后得到了 89 分,出了成绩之后呢,有一个同学就给我发微信,他说,出分了,你考了多少分,我说,89,你呢。这个你呢,真的是我问出来就后悔了的一句话,因为他告诉我,哦,我 98。我的 89 分并没有因为他的 98 分而有一丝一毫的减损,但我的快乐却消失了。原创 2022-12-28 17:04:44 · 570 阅读 · 0 评论 -
学习内容平均留存率
原创 2022-05-20 04:19:02 · 517 阅读 · 0 评论 -
钱学森:谈谈学习和工作
这些艺术(德国古典艺术歌曲)里所包含的诗情画意和对于人生的深刻理解,使得我丰富了对世界的认识,学会了艺术的宽广思维方法。正因为我受到这些艺术方面的熏陶,所以我才能够避免死心眼儿,避免机械唯物论,想问题能够宽一点、活一点。.........原创 2022-07-23 01:28:32 · 634 阅读 · 0 评论 -
北大博士小姐姐:分享压箱底干货 | 五招提高学习效率
我发现我去图书馆、自习室这种有学习氛围的地方,更加的高效,因为看见大家都在努力学习,我就会不好意思玩手机开小差,这在心理学上叫做同伴效应,当然也有人会觉得去这些地方好浪费时间,自己在宿舍甚至被窝里都能学进去,所以这里建议大家,一定要亲身尝试一下,然后找到最适合自己的学习环境,这样做的另外一个好处,就是可以给自己一个积极的心理暗示,我已经到了这个环境里,一定可以好好学进去的!可以让你的大脑更加集中在一件事情上,不仅能提高注意力也能提高记忆力哦,............原创 2022-07-21 02:46:37 · 414 阅读 · 0 评论 -
Paper Download Artifact
[toc]。原创 2022-08-15 18:36:30 · 740 阅读 · 3 评论 -
“Four golden lessons” by Steven Weinberg
史蒂文·温伯格(Steven Weinberg,1933年5月3日-),生于纽约,美国物理学家,1979年获诺贝尔物理学奖。《Four golden lessons》,是美国物理学家、诺贝尔奖(1979)获得者 Steven Weinberg 发表在 Nature-scientist 上的一篇文章,文章中,温伯格为即将进入科研领域的研究生总结了四条箴言。原创 2022-10-08 22:13:38 · 278 阅读 · 0 评论 -
读书笔记——我的学习与研究经历(杨振宁/2012)
1)我父亲是研究数学的,我小时候他很自然地给我讲了一些“鸡兔同笼”、“韩信点兵”等四则问题。很多年以后在美国,我有三个孩子,他们小时候我也介绍给他们“鸡兔同笼”、“韩信点兵”等问题,他们也都学得很快,我也很高兴。这给我们一个启示:外来的信息如果能够融入个人脑子里面的软件之中,就可能会“情有独钟”,有继续发展的可能,像是一粒小种子,如再有好土壤、有阳光、有水,就可能发展成一种偏好,可以使这个人喜欢去钻研某类问题,喜欢向哪些方向去做“准备工作”,如果再幸运的话,也就可能发展出一个突破口,而最后开花结果。原创 2022-10-04 17:26:47 · 547 阅读 · 0 评论 -
连分数(Continued fraction)
在数学中,连分数或繁分数即如下表达:x=a0+1a1+1a2+1a3+1⋱ {\displaystyle x=a_{0}+{\cfrac {1}{a_{1}+{\cfrac {1}{a_{2}+{\cfrac {1}{a_{3}+{\cfrac {1}{\ddots \,}}}}}}}}}x=a0+a1+a2+a3+⋱1111这里的 a0a_{0}a0 是某个整数,而所有其他的数 ana_{n}an 都是正整数,可依样定义出更长的表达式。如果部分分子(partial numerato原创 2022-10-03 15:46:11 · 4373 阅读 · 0 评论 -
读书笔记——我知道的杨振宁(葛墨林/2022)
杨先生就是这样,关注的问题非常多,但是他不一定做。他常跟我们说,做研究首先要根据自己的情况领域新发展的同时,也要兼顾其他领域。等物理学进展到一定程度,你的能力也达到一定程度,就可以转到你认为更有价值的好的问题上去。在治学态度上,杨先生强调“宁拙毋巧,宁朴毋华”。他常和我们说,做东西刚开始的时候不要取巧,笨一点不要紧,老老实实地弄熟了,才能谈到巧。要朴实的东西,不要华而不实的东西。他在做杨-米尔斯理论的同时兼顾其他,并不断积累着,待物理发展和个人积累都达到一定程度,他就转到了杨-巴克斯特方程及其物理应用上。原创 2022-10-03 11:18:23 · 288 阅读 · 0 评论 -
在 MIT 教了大半辈子书,他学会 10 件事
今天想为大家带来由 MIT 至今唯一同时担任数学教席与哲学教席的Gian-Carlo Rota(吉安-卡洛·罗塔)教授带来的 10 条人生谏言。原创 2022-08-07 04:52:32 · 818 阅读 · 0 评论 -
物体颜色的来源
对于每个厚度的氧化物层,特定颜色的两个波将完全是半波长的异相,因此当它们在表面重新组合时,它们彼此抵消。如果光源是白色的,我们观察到的颜色,将是该颜色的补色,即白光中消除特定颜色的剩下的光的颜色。氧化层中的孔隙使铝具有独特的特性,使得其具有重要的着色能力,表面上形成的孔具有蜂窝状图案,对表层进行着色时,颜料会深入到孔洞内部,可以看到不同厚度的氧化层会有不同的颜色,颜色来自于氧化膜的干涉现象,底部表面反射的光线和顶部表面反射的光线会产生干涉,氧化层的厚度决定了这两个射线是如何干涉的。首先使用铝作为正极,...原创 2022-08-03 01:32:34 · 1056 阅读 · 0 评论 -
物理量与单位符号的书写标准
以上这15项量和单位国家标准是强制性国家标准,是各行各业必须执行的基础性标准,是国家法定计量单位的具体应用形式。物理量符号的书写一般采用斜体,而单位符号则采用正体,这样就可以避免物理量与单位相混淆。数学公式中的功能符号也用正体,如对数ln、指数e、微分d,等中文中使用单位的时候只写其简体,如开尔文,只写“开”,相应的英文单位为“K”。物理量是量度物理属性或描述物体运动状态及其变化过程的量,而单位是用来衡量物理量的标准。)为正体外,其他为斜体,物理量的单位的符号一律为正体。..................原创 2022-07-23 21:52:08 · 4127 阅读 · 0 评论 -
物理学/数学中常用的“等号”
数学)既不近似也不等于(Neitherapproximatelynoractuallyequalto);(几何学)不一致的(Notcongruentto);(数学)大约等于(approximatelyequalto)(数学)大约等于;渐近等于(asymptoticallyequalto),或大约等于(approximatelyequalto)大约但不等于(approximatelybutnotactuallyequalto)大约,但实际上不等于。............原创 2022-07-15 04:00:30 · 2941 阅读 · 0 评论 -
Some Modest Advice for Graduate Students - by Stephen C. Stearns, Ph.D.
From the link: {url:https%3A//www.urlshare.cn/umirror_url_check?_wv=1&srctype=touch&apptype=android&loginuin=605458008&plateform=mobileqq&url=http%253A%252F%252Fwww.yale.edu%252Feeb%252Fstearns%252Fadvice.htm&src_uin=2234862455&src_scene=311&cli_scene=getD原创 2022-06-24 01:54:07 · 8248 阅读 · 0 评论 -
The Most Common Habits from more than 200 English Papers written by Graduate Chinese Students
The Most Common Habits from more than 200 English Papers written by Graduate Chinese Engineering Students原创 2022-06-16 02:09:25 · 399 阅读 · 1 评论 -
样本方差分母为什么是n-1?——无偏估计
首先要分清总体和样本:方差(Variance),衡量随机变量或一组数据离散程度的度量。根据总体和样本的区别分为总体方差和样本方差两种。σ2=∑i=1n(Xi−μ)2n\sigma^{2}=\frac{\sum_{i=1}^{n}(X_{i}-\mu)^{2}}{n}σ2=n∑i=1n(Xi−μ)2S2=∑i=1n(Xi−xˉ)2n−1S^{2}=\frac{\sum_{i=1}^{n}(X_{i}-\bar{x})^{2}}{n-1}S2=n−1∑i=1n(Xi−xˉ)2在实际应用中是通原创 2022-06-05 02:14:35 · 2020 阅读 · 0 评论 -
在不同领域内自相关函数/自协方差函数含义辨析
文章目录0 简介1 随机过程中的自相关2 确定信号下的自相关函数0 简介自相关(autocorrelation),也称为串行相关(serial correlation),是信号与自身的延迟副本之间的相关关系,它是延迟的函数。 非正式地,这是观察之间的相似性,是它们之间时间滞后的函数。 自相关分析是一种数学工具,可用于查找重复模式,例如是否存在被噪声掩盖的周期性信号,或在其谐波频率所隐含的信号中识别缺少的基频。 它通常用于信号处理中,以分析功能或一系列值,例如时域信号。 不同的研究领域对自原创 2022-05-24 21:49:10 · 2985 阅读 · 0 评论 -
高斯分布——在误差测量中的推导
设aaa为真值,x1x_{1}x1为测量值,δ1\delta_{1}δ1为误差,那么误差为δ1\delta_{1}δ1的观测值x1x_{1}x1出现的概率为f(δ1)dδ1f(\delta_{1})d\delta_{1}f(δ1)dδ1误差为δ2\delta_{2}δ2的观测值x2x_{2}x2出现的概率为f(δ2)dδ2f(\delta_{2})d\delta_{2}f(δ2)dδ2⋯\cdots⋯误差为δN\delta NδN的观测值xNx_{N}xN出现的概率为f(δ原创 2022-04-21 19:14:23 · 1628 阅读 · 2 评论 -
构建复杂网络的几种方法(邻接矩阵,邻接表,十字链表,邻接多重表)
通常意义下的链表有单链表,双向链表,循环链表等,而复杂网络每个节点可能会同时指向任意个节点,从数据结构上来说两者是不同的。所以首先我们先认识一下数据结构有哪些。数据结构有很多种,一般来说,按照数据的逻辑结构对其进行简单的分类,包括线性结构和非线性结构两类。线性结构简单地说,线性结构就是表中各个结点具有线性关系。如果从数据结构的语言来描述,线性结构应该包括如下几点:1、线性结构是非空集。2、线性结构有且仅有一个开始结点和一个终端结点。3、线性结构所有结点都最多只有一个直接前驱结点和一个直原创 2022-04-12 17:34:40 · 10002 阅读 · 1 评论 -
长方形面积公式的由来
假定长方形的边长分别为实数aaa,bbb,则面积可以表示为:S=ab.S=ab.S=ab.但是长方形的面积为何定义为如此呢?这是人为定义?还是纯天然的?首先从历史角度来说,这是人通过实践的经验得来的。我们可以考虑这样的场景:把很多物体按照行和列排列,则最终物体的总数就是行数乘上列数,如下图的南瓜:![在这里插入图片描述](https://img-blog.csdnimg.cn/e8e74a31052b4f19a11acb1ac1938b17.png ,size_12 =300x300)对于离原创 2022-04-12 04:42:20 · 3339 阅读 · 0 评论 -
条件概率下的全概率公式
常见的全概率公式:P(B)=∑i=1nP(Ai)P(B∣Ai)P\left(B\right)= \sum^{n}_{i=1} P(A_{i})P(B|A_{i})P(B)=i=1∑nP(Ai)P(B∣Ai)当公式左端为条件概率时会有相类似的全概率公式:P(C∣A)=∑B∈IP(B∣A)P(C∣B,A)=∑B∈IP(B,A)P(A)P(C,B,A)P(A,B)=∑B∈IP(C,B,A)P(A)=∑B∈IP(C,B∣A)=P(C∣A)\begin{aligned}P(C|A) & =原创 2022-04-02 03:12:16 · 3149 阅读 · 0 评论 -
如何以聪明的方式提问
埃里克·史蒂文·雷蒙德泰尔苏斯企业<esr@thyrsus.com>里克·摩恩<respond-auto@linuxmafia.com>版权所有 © 2001,2006,2014 Eric S. Raymond, Rick Moen目录翻译免責聲明介绍在你问之前当你问仔细选择您的论坛堆栈溢出网络和 IRC 论坛第二步,使用项目邮件列表使用...转载 2022-04-01 02:02:08 · 310 阅读 · 0 评论 -
生成函数简介(Generating function)
生成函数(Generating function),又称母函数,是一种形式幂级数,其每一项的系数可以提供关于这个序列的信息。使用母函数解决问题的方法称为母函数方法。生成函数有许多不同的种类,但大多可以表示为单一的形式:F(x)=∑nankn(x)F(x)=\sum_{n}a_{n}k_{n}(x)F(x)=n∑ankn(x)其中kn(x)k_{n}(x)kn(x)被称为核函数。不同的核函数会导出不同的生成函数,拥有不同的性质。举个例子:普通生成函数:kn(x)=xnk_{n}(x)=原创 2022-03-12 20:57:22 · 6860 阅读 · 0 评论 -
数学算术中无穷小量的不完备性
假设我们有一组微分之后的结果:a+h(1)a+h \tag{1}a+h(1)其中aaa是实数,hhh为无穷小量,则一般情况下我们可以忽略掉h使其变为:a+h→a(2)a+h\rightarrow a\tag{2}a+h→a(2)当我们拿着上述结果(2)(2)(2)交给另一个人去计算:a−ah(3)\frac{a-a}{h}\tag{3}ha−a(3)时,hhh为无穷小量,第一个aaa为前式得到的aaa,则上式可以简化为:a−ah=0h→0(4)\frac{a-a}{h}=\f原创 2022-03-10 22:20:02 · 230 阅读 · 0 评论 -
双对数坐标(log-log)下“斜率”“幅值”等概念对应到线性坐标下的实际含义
首先我们取同一组数据(实为一个数据的功率谱),然后分别画出其在线性坐标和双对数坐标下(loglog)下的曲线:一般我们为了更好观察数据特征,特意把数据画在双对数坐标下,然后分析数据的时候我们经常形象的说其在低频区域的“斜率”如何如何,高频区域的“斜率”如何如何,还有其“幅值”大小如何如何。那么这些在双对数坐标下的这种人的直观概念到底是怎么一回事呢?说是到底去问是怎么一回事,主要是我们观察到了数据在双对数坐标和线性坐标下的特征是不一样的,双对数坐标中的“斜率”还有“幅值”在线性坐标中找不到很直观的对应原创 2022-03-10 22:05:25 · 9994 阅读 · 2 评论 -
利用 Logarithmic Binning (Log-Binning)方法绘制幂律分布(Power-law Distributions)曲线
绘制度分布是分析网络属性的一个组成部分。该过程从获得NkN_{k}Nk开始,即度数为kkk的节点数。这可以通过直接测量或模型来提供。从NkN_{k}Nk我们计算出pk=Nk/Np_{k}=N_{k}/Npk=Nk/N。问题是,如何绘制pkp_{k}pk以最好地提取其属性。使用log-log图在无标度网络中,具有一或两条链路的众多节点与少数节点共存,其中少数节点为具有数千甚至数百万链路的节点。使用线性 k 轴压缩无数小k区域中的节点,使它们不可见。类似地,由于k=1k=1k=1和大kkk原创 2022-03-09 23:30:48 · 1936 阅读 · 0 评论 -
量纲——物理量在方程中的位置
在物理学中,带单位的函数或者数不会出现在对数函数或者指数函数中,因为这会导致量纲的失效,这是为什么呢?原创 2021-10-22 05:13:32 · 206 阅读 · 0 评论 -
洛伦兹函数(Lorentzian Function)
洛伦兹函数,其函数形式为原创 2021-05-30 07:45:01 · 20382 阅读 · 3 评论 -
柯西过程(Cauchy process)
在概率论中,柯西过程(Cauchy process)是一种随机过程。 柯西过程有对称和不对称形式。术语“ Cauchy过程”一般指对称柯西过程。柯西过程具有许多特性:Lévy过程; 稳定过程(stable process); 纯跳跃过程(pure jump process); 其矩是无限的(infinite moments)。对称柯西过程属于Lévy过程的子类,可以用布朗运动或维纳过程来描述。Lévy从属者是与具有位置参数{\ displaystyle 0}和比例参数{\ displayst原创 2021-05-27 22:24:11 · 1548 阅读 · 0 评论 -
琴生不等式(Jensen Inequality)
琴生不等式以丹麦技术大学数学家John Jensen命名,它给出了积分的凸函数值和凸函数的积分值间的关系。又称詹森不等式。若原创 2021-05-27 18:04:40 · 27039 阅读 · 0 评论 -
传递函数,Z变换与差分方程之间的转化
目录传递函数的形式Z函数差分方程形式在我们进行PID控制器或现代控制理论设计时,经常遇到三者之间的转换,下面将阐述一下如何在MATLAB上操作。注意!下面所有的“*”即半角单引号,都被替换成了星号*,所以务必注意!!传递函数的形式假设传递函数为:在matlab里面建立这个传递函数的命令就是:sys=tf(400,[1,50,0],*inputdelay*,0.004);%inputdelay两边的*号改成半角单引号!!Z函数把传递函数离散化就得到Z函数,在.原创 2021-05-21 05:24:21 · 19113 阅读 · 4 评论 -
概率生成函数(probability-generating function)
生成函数即母函数,是组合数学中尤其是计数方面的一个重要理论和工具。最早提出母函数的人是法国数学家LaplaceP.S.在其1812年出版的《概率的分析理论》中明确提出。 生成函数有普通型生成函数和指数型生成函数两种,其中普通型用的比较多。 生成函数的应用简单来说在于研究未知(通项)数列规律,用这种方法在给出递推式的情况下求出数列的通项,生成函数是推导Fibonacci数列的通项公式方法之一。 另外生成函数也广泛应用于编程与算法设计、分析上,运用这种数学方法往往对程序效率与速度有很大改进。数学定义在概原创 2021-05-11 20:30:33 · 12947 阅读 · 0 评论 -
文献书籍中使用句点代替句号的情形介绍
在中国大陆,中西文同时大量混排时,为避免“。”和“. ”穿插使用时的不便,可统一采用“. ”(全角句点) 在科技文献及数理书籍中,为避免句号被排版人员误会作“0”或者“o”相混淆,也可采用“. ”(全角句点)来代替。...原创 2021-05-09 01:59:28 · 635 阅读 · 0 评论 -
Skellam分布(两泊松分布变量差的分布)
一般来说,两个具有泊松分布的随机变量之和组成的新变量还是泊松分布,而两个的差却并不再是泊松分布,而是Skellam分布,这个是与两项分布和正态分布不同的地方,后两者具有随机变量和与差的再生性质。泊松分布变量和的再生性一般用随机分布的特征函数来证明一个随机分布是否具有再生性。下面先证明泊松分布的和的再生性。泊松分布的概率密度函数为:其中为平均值,。一般用来表示泊松分布。泊松分布的特征函数可以用特征函数的定义来求:利用特征函数的性质,若相互独立:则有即相互独立随机原创 2021-05-08 21:48:39 · 8711 阅读 · 0 评论 -
中国重工业部(现为国有资产监督管理委员会)各部门演化史(图)
转载 2021-04-28 18:58:57 · 1082 阅读 · 0 评论 -
压缩感知(compressed sensing)
待完善https://www.cnblogs.com/duanhx/p/9655261.html压缩感知(Compressed sensing),也被称为压缩采样(Compressive sampling)或稀疏采样(Sparse sampling),是一种寻找欠定线性系统的稀疏解的技术。压缩感知被应用于电子工程尤其是信号处理中,用于获取和重构稀疏或可压缩的信号。这个方法利用讯号稀疏的特性,相较于奈奎斯特理论,得以从较少的测量值还原出原来整个欲得知的讯号。核磁共振就是一个可能使用此方法的应用。...原创 2021-04-26 15:38:53 · 502 阅读 · 0 评论