von Mises-Fisher Distribution (Appendix 1)

2. Relation to Normal Distribution

疑问:有没有不各向同性vMF
:应该是没有的,如果想让各方向偏离中心的速度不一致,则协方差矩阵不为 I \bm{I} I 的倍数. 正态分布的概率密度函数为: f ( x ) = 1 ( 2 π ) p ∣ Σ ∣ e − 1 2 ( x − μ ) ⊺ Σ − 1 ( x − μ ) \begin{aligned} f(\bm{x}) = \frac{1}{\sqrt{(2\pi)^p |\Sigma|}} e^{-\frac{1}{2} (\bm{x}-\bm{\mu})^\intercal\Sigma^{-1}(\bm{x}-\bm{\mu})} \end{aligned} f(x)=(2π)p∣Σ∣ 1e21(xμ)Σ1(xμ) 类比上面的推导,我们需要得出形似: G p ( x ; μ , κ ) = C ( p , κ , r ) e x p ( κ r μ ⊺ r Σ − 1 x ) \begin{aligned} G_p(\bm{x}; \bm{\mu}, \kappa) &= C(p,\kappa,r) exp\left(\kappa r \frac{\bm{\mu}^\intercal}{r} \Sigma^{-1} \bm{x} \right) \end{aligned} Gp(x;μ,κ)=C(p,κ,r)exp(κrrμΣ1x) 的东西,所以,必要的,需要: x ⊺ Σ − 1 x = c o n s t \begin{aligned} \bm{x}^{\intercal} \Sigma^{-1} \bm{x} &= const \end{aligned} xΣ1x=const 我们知道,要想让 x ⊺ Σ − 1 x = c o n s t \bm{x}^{\intercal} \Sigma^{-1} \bm{x} = const xΣ1x=const 表示为,则必须使 Σ − 1 = α I \Sigma^{-1}=\alpha \bm{I} Σ1=αI,所以,假设不了“协方差矩阵不为 I \bm{I} I 的倍”, 也就不可能存在不各向同性vMF.

[注] x ⊺ Σ − 1 x = c o n s t \bm{x}^{\intercal} \Sigma^{-1} \bm{x} = const xΣ1x=const,表示一般的超椭球。

等等!对于 x \bm{x} x 来说, 即使它不是单位向量也代表了一个方向 x ∥ x ∥ \frac{\bm{x}}{\|\bm{x}\|} xx 的分布会是非各向同性的 vMF 吗?有可能是哎!
假设 y = [ y 1 y 2 ] = [ 1 0 0 2 ] [ x 1 x 2 ] = A x \bm{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \bm{Ax} y=[y1y2]=[1002][x1x2]=Ax y \bm{y} y 代表单位圆的话,则 x \bm{x} x 在椭圆 x 1 2 + ( 2 x 2 ) 2 = 1 x_1^2 + (2x_2)^2 = 1 x12+(2x2)2=1 上,如下图:

可以看到,B 和 D 点是对应的,那么弧 AB 和 AD 的“点数”应该是一样的,而弧 AB 对应的方向却在弧 AC 上,即 AD 段对应的方向,被压缩在了 AC 段,如果采样 y \bm{y} y 的话,对应的 x \bm{x} x 方向会更集中趋于椭圆的长轴实现了“非各向同性”,只不过分布在椭圆上,且采样后需要归一化处理

5. 采样

t t t 的概率密度函数推导

直接将 t = μ ⊺ x t = \bm{\mu}^\intercal\bm{x} t=μx 代入 f p ( x ; μ , κ ) f_p(\bm{x}; \bm{\mu}, \kappa) fp(x;μ,κ), 得: f p ( x ; μ , κ ) = C p ( κ ) e x p ( κ μ ⊺ x ) = C p ( κ ) e x p ( κ t ) t ∈ [ − 1 , 1 ] = C p ( κ ) e x p ( κ c o s θ ) θ ∈ [ 0 , π ] \begin{aligned} f_p(\bm{x}; \bm{\mu}, \kappa) &= C_p(\kappa) exp(\kappa \bm{\mu}^\intercal\bm{x}) & \\ &= C_p(\kappa) exp(\kappa t) & t \in [-1, 1] \\ &= C_p(\kappa) exp(\kappa cos\theta) & \theta \in [0, \pi] \end{aligned} fp(x;μ,κ)=Cp(κ)exp(κμx)=Cp(κ)exp(κt)=Cp(κ)exp(κcosθ)t[1,1]θ[0,π] 注意这是 x \bm{x} x 一点处的概率密度. 沿着 t t t 处的切子球求积分, 以得到 t t t θ \theta θ 处的整个概率密度: ∫ 切子球 f p ( x ; μ , κ ) d s = ∫ 切子球 C p ( κ ) e x p ( κ x ) d s = C p ( κ ) e x p ( κ t ) 2 π p − 1 2 Γ ( p − 1 2 ) ( 1 − t 2 ) p − 2 2 S p − 2 的表面积 ∝ r p − 2 = C p ( κ ) e x p ( κ c o s θ ) 2 π p − 1 2 Γ ( p − 1 2 ) s i n p − 2 θ \begin{aligned} \int_{切子球} f_p(\bm{x}; \bm{\mu}, \kappa) ds &= \int_{切子球} C_p(\kappa) exp(\kappa \bm{x}) ds & \\ &= C_p(\kappa) exp(\kappa t)\frac{2\pi^{\frac{p-1}{2}}}{\Gamma(\frac{p-1}{2})}(1-t^2)^\frac{p-2}{2} & S^{p-2} 的表面积 \propto r^{p-2} \\ &= C_p(\kappa) exp(\kappa cos\theta) \frac{2\pi^{\frac{p-1}{2}}}{\Gamma(\frac{p-1}{2})} sin^{p-2}\theta & \end{aligned} 切子球fp(x;μ,κ)ds=切子球Cp(κ)exp(κx)ds=Cp(κ)exp(κt)Γ(2p1)2π2p1(1t2)2p2=Cp(κ)exp(κcosθ)Γ(2p1)2π2p1sinp2θSp2的表面积rp2 根据 n-sphere - Wikipedia, 切子球 S p − 2 S^{p-2} Sp2 的表面积 S p − 2 = 2 π p − 1 2 Γ ( p − 1 2 ) r p − 2 S_{p-2} = \frac{2\pi^{\frac{p-1}{2}}}{\Gamma(\frac{p-1}{2})} r^{p-2} Sp2=Γ(2p1)2π2p1rp2, 再沿 t t t θ \theta θ 积分: ∫ 0 π C p ( κ ) e x p ( κ c o s θ ) 2 π p − 1 2 Γ ( p − 1 2 ) s i n p − 2 θ d θ = C p ( κ ) 2 π p − 1 2 Γ ( p − 1 2 ) ∫ 1 − 1 e x p ( κ t ) ( 1 − t 2 ) p − 2 2 ( − 1 1 − t 2 d t ) ∵ c o s 0 = 1 ,   c o s π = − 1 = C p ( κ ) 2 π p − 1 2 Γ ( p − 1 2 ) ∫ − 1 1 e x p ( κ t ) ( 1 − t 2 ) p − 3 2 d t = C p ( κ ) 2 π ν + 1 2 Γ ( ν + 1 2 ) ∫ − 1 1 e x p ( κ t ) ( 1 − t 2 ) ν − 1 2 d t 令  ν = p 2 − 1 \begin{aligned} & \int_0^\pi C_p(\kappa) exp(\kappa cos\theta) \frac{2\pi^{\frac{p-1}{2}}}{\Gamma(\frac{p-1}{2})} sin^{p-2}\theta d\theta \\ =& C_p(\kappa) \frac{2\pi^{\frac{p-1}{2}}}{\Gamma(\frac{p-1}{2})} \int_{1}^{-1} exp(\kappa t) (1-t^2)^\frac{p-2}{2} (\frac{-1}{\sqrt{1-t^2}} dt) & \because cos0=1,~ cos\pi=-1 \\ =& C_p(\kappa) \frac{2\pi^{\frac{p-1}{2}}}{\Gamma(\frac{p-1}{2})} \int_{-1}^{1} exp(\kappa t) (1-t^2)^{\frac{p-3}{2}} dt \\ =& C_p(\kappa) \frac{2\pi^{\nu+\frac{1}{2}}}{\Gamma(\nu+\frac{1}{2})} \int_{-1}^{1} exp(\kappa t) (1-t^2)^{\nu-\frac{1}{2}} dt & 令~\nu=\frac{p}{2}-1 \\ \end{aligned} ===0πCp(κ)exp(κcosθ)Γ(2p1)2π2p1sinp2θdθCp(κ)Γ(2p1)2π2p111exp(κt)(1t2)2p2(1t2 1dt)Cp(κ)Γ(2p1)2π2p111exp(κt)(1t2)2p3dtCp(κ)Γ(ν+21)2πν+2111exp(κt)(1t2)ν21dtcos0=1, cosπ=1 ν=2p1 那么, 将 ∫ − 1 1 e x p ( κ t ) ( 1 − t 2 ) ν − 1 2 d t = Γ ( 1 2 ) Γ ( ν + 1 2 ) I ν ( κ ) ( κ / 2 ) ν [ I ν 的公式 ] = Γ ( 1 2 ) Γ ( p − 1 2 ) I p 2 − 1 ( κ ) ( κ / 2 ) p 2 − 1 \begin{aligned} \int_{-1}^{1} exp(\kappa t)(1-t^2)^{\nu-\frac{1}{2}} dt &= \frac{\Gamma({\frac{1}{2}})\Gamma(\nu+{\frac{1}{2}})I_{\nu}(\kappa)}{(\kappa / 2)^\nu} & [I_{\nu} 的公式] \\ &= \frac{\Gamma({\frac{1}{2}})\Gamma(\frac{p-1}{2})I_{\frac{p}{2}-1}(\kappa)}{(\kappa / 2)^{\frac{p}{2}-1}} \end{aligned} 11exp(κt)(1t2)ν21dt=(κ/2)νΓ(21)Γ(ν+21)Iν(κ)=(κ/2)2p1Γ(21)Γ(2p1)I2p1(κ)[Iν的公式] 代入, 得: C p ( κ ) 2 π ν + 1 2 Γ ( ν + 1 2 ) ∫ − 1 1 e x p ( κ t ) ( 1 − t 2 ) ν − 1 2 d t = C p ( κ ) 2 π ν + 1 2 Γ ( ν + 1 2 ) Γ ( 1 2 ) Γ ( ν + 1 2 ) I ν ( κ ) ( κ / 2 ) ν = 2 π ν + 1 I ν ( κ ) ( κ / 2 ) ν C p ( κ ) Γ ( 1 2 ) = π 1 2 = 2 π p 2 I p 2 − 1 ( κ ) ( κ / 2 ) p 2 − 1 C p ( κ ) = ( 2 π ) p 2 I p 2 − 1 ( κ ) κ p 2 − 1 C p ( κ ) = 1 ( 2 ) ⟺ C p ( κ ) = κ p 2 − 1 ( 2 π ) p 2 I p 2 − 1 ( κ ) [ 与 W i k i p e d i a 一致 ] \begin{aligned} & C_p(\kappa) \frac{2\pi^{\nu+\frac{1}{2}}}{\Gamma(\nu+\frac{1}{2})} \int_{-1}^{1} exp(\kappa t) (1-t^2)^{\nu-\frac{1}{2}} dt \\ =& C_p(\kappa) \frac{2\pi^{\nu+\frac{1}{2}}}{\Gamma(\nu+\frac{1}{2})} \frac{\Gamma({\frac{1}{2}})\Gamma(\nu+\frac{1}{2}) I_{\nu}(\kappa)}{(\kappa / 2)^{\nu}} \\ =& \frac{2\pi^{\nu+1}I_{\nu}(\kappa)}{(\kappa / 2)^{\nu}} C_p(\kappa) & \Gamma({\frac{1}{2}}) = \pi^{\frac{1}{2}} \\ =& \frac{2\pi^{\frac{p}{2}}I_{\frac{p}{2}-1}(\kappa)}{(\kappa / 2)^{\frac{p}{2}-1}} C_p(\kappa) \\ =& \frac{(2\pi)^{\frac{p}{2}}I_{\frac{p}{2}-1}(\kappa)}{\kappa^{\frac{p}{2}-1}} C_p(\kappa) = 1 & (2) \\ \Longleftrightarrow & \\ C_p(\kappa) =& \frac{\kappa^{\frac{p}{2}-1}}{(2\pi)^{\frac{p}{2}} I_{\frac{p}{2}-1}(\kappa)} & [与 Wikipedia 一致] \end{aligned} ====Cp(κ)=Cp(κ)Γ(ν+21)2πν+2111exp(κt)(1t2)ν21dtCp(κ)Γ(ν+21)2πν+21(κ/2)νΓ(21)Γ(ν+21)Iν(κ)(κ/2)ν2πν+1Iν(κ)Cp(κ)(κ/2)2p12π2pI2p1(κ)Cp(κ)κ2p1(2π)2pI2p1(κ)Cp(κ)=1(2π)2pI2p1(κ)κ2p1Γ(21)=π21(2)[Wikipedia一致] 所以, 由式 ( 2 ) (2) (2) 可得 t t t 的概率密度函数为: f r a d i a l ( t ; κ , p ) = C p ( κ ) 2 π ν + 1 2 Γ ( ν + 1 2 ) e x p ( κ t ) ( 1 − t 2 ) ν − 1 2 ν = p 2 − 1 = ( κ / 2 ) ν Γ ( 1 2 ) Γ ( ν + 1 2 ) I ν ( κ ) e x p ( κ t ) ( 1 − t 2 ) ν − 1 2 [ 与 W i k i p e d i a 一致 ] = ( κ / 2 ) p 2 − 1 π Γ ( p − 1 2 ) I p 2 − 1 ( κ ) e x p ( κ t ) ( 1 − t 2 ) p − 3 2 \begin{aligned} f_{radial}(t; \kappa, p) &= C_p(\kappa) \frac{2\pi^{\nu+\frac{1}{2}}}{\Gamma(\nu+\frac{1}{2})} exp(\kappa t) (1-t^2)^{\nu-\frac{1}{2}} & \nu = \frac{p}{2}-1 \\ &= \frac{(\kappa/2)^\nu}{\Gamma({\frac{1}{2}})\Gamma(\nu+{\frac{1}{2}})I_{\nu}(\kappa)} exp(\kappa t) (1-t^2)^{\nu-\frac{1}{2}} & [与 Wikipedia 一致] \\ &= \frac{(\kappa/2)^{\frac{p}{2}-1}}{\sqrt{\pi}\Gamma(\frac{p-1}{2})I_{\frac{p}{2}-1}(\kappa)} exp(\kappa t) (1-t^2)^{\frac{p-3}{2}} \end{aligned} fradial(t;κ,p)=Cp(κ)Γ(ν+21)2πν+21exp(κt)(1t2)ν21=Γ(21)Γ(ν+21)Iν(κ)(κ/2)νexp(κt)(1t2)ν21=π Γ(2p1)I2p1(κ)(κ/2)2p1exp(κt)(1t2)2p3ν=2p1[Wikipedia一致]

单位球上的均匀分布采样

实际上, 从标准正态分布 N o r m a l ( 0 , 1 ) Normal(0,1) Normal(0,1) 中采样 p p p 个数, 组成向量 v \bm{v} v, 归一化, 就实现了球 S p − 1 S_{p-1} Sp1 上的均匀采样, 并不需要多元正态分布 M u l t i v a r i a t e N o r m a l ( 0 , I ( p ) ) MultivariateNormal(0, \bm{I}^{(p)}) MultivariateNormal(0,I(p)). 因为 p p p 个独立采样自 N o r m a l ( 0 , 1 ) Normal(0,1) Normal(0,1) p p p 个数概率是: ∏ i = 1 p 1 2 π e x p ( − x i 2 2 ) = 1 ( 2 π ) p 2 e x p ( − ∑ i = 1 p x i 2 2 ) \begin{aligned} & \prod_{i=1}^p \frac{1}{\sqrt{2\pi}} exp(-\frac{x_i^2}{2}) \\ =& \frac{1}{(2\pi)^\frac{p}{2}}exp\left(-\frac{\sum_{i=1}^p x_i^2}{2}\right) \end{aligned} =i=1p2π 1exp(2xi2)(2π)2p1exp(2i=1pxi2) 恰好是 p p p 元标准正态分布的概率密度.

5.2 拒绝采样

为了与原论文一致, 本小节使用 m m m 代替 p p p.

首先, 设 Y ∼ B e ( α , β ) Y \sim Be(\alpha, \beta) YBe(α,β), 概率密度函数为: f ( y ; α , β ) = y α − 1 ( 1 − y ) β − 1 ∫ 0 1 u α − 1 ( 1 − u ) β − 1 d u = Γ ( α + β ) Γ ( α ) Γ ( β ) y α − 1 ( 1 − y ) β − 1 = 1 B ( α , β ) y α − 1 ( 1 − y ) β − 1 \begin{aligned} f(y; \alpha, \beta) &= \frac{y^{\alpha-1}(1-y)^{\beta-1}}{\int_0^1 u^{\alpha-1}(1-u)^{\beta-1} du} \\ &= \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} y^{\alpha-1}(1-y)^{\beta-1} \\ &= \frac{1}{\Beta(\alpha,\beta)} y^{\alpha-1}(1-y)^{\beta-1} \end{aligned} f(y;α,β)=01uα1(1u)β1duyα1(1y)β1=Γ(α)Γ(β)Γ(α+β)yα1(1y)β1=B(α,β)1yα1(1y)β1 其中 y ∈ ( 0 , 1 ) , α , β > 0 y \in (0,1), \alpha, \beta > 0 y(0,1),α,β>0. 令 X = 1 − ( 1 + b ) Y 1 − ( 1 − b ) Y ⇔ Y = 1 − X ( 1 + b ) − ( 1 − b ) X b ∈ ( 0 , 1 ) \begin{aligned} X = \frac{1-(1+b)Y}{1-(1-b)Y} &\Leftrightarrow Y = \frac{1-X}{(1+b)-(1-b)X} \\ b &\in (0,1) \end{aligned} X=1(1b)Y1(1+b)YbY=(1+b)(1b)X1X(0,1) 代入上述概率密度函数 f ( y ; α , β ) f(y; \alpha, \beta) f(y;α,β), 并令 α = β = m − 1 2 \alpha=\beta=\frac{m-1}{2} α=β=2m1 得: f ( 1 − x ( 1 + b ) − ( 1 − b ) x ; m − 1 2 , m − 1 2 ) = 1 B ( m − 1 2 , m − 1 2 ) ( ( 1 − x ( 1 + b ) − ( 1 − b ) x ) ∗ ( 1 − 1 − x ( 1 + b ) − ( 1 − b ) x ) ) m − 1 2 − 1 = 1 B ( m − 1 2 , m − 1 2 ) ( ( 1 − x ( 1 + b ) − ( 1 − b ) x ) ∗ ( ( 1 + b ) − ( 1 − b ) x − ( 1 − x ) ( 1 + b ) − ( 1 − b ) x ) ) m − 3 2 = 1 B ( m − 1 2 , m − 1 2 ) ( ( 1 − x ( 1 + b ) − ( 1 − b ) x ) ∗ ( b ( 1 + x ) ( 1 + b ) − ( 1 − b ) x ) ) m − 3 2 = 1 B ( m − 1 2 , m − 1 2 ) ( b ( 1 − x 2 ) [ ( 1 + b ) − ( 1 − b ) x ] 2 ) m − 3 2 = b m − 3 2 B ( m − 1 2 , m − 1 2 ) ( 1 − x 2 ) m − 3 2 [ ( 1 + b ) − ( 1 − b ) x ] m − 3 = e ( x , b )      其中  x ∈ ( − 1 , 1 ) , b ∈ ( 0 , 1 ) \begin{aligned} &f(\frac{1-x}{(1+b)-(1-b)x}; \frac{m-1}{2}, \frac{m-1}{2}) \\ =& \frac{1}{\Beta(\frac{m-1}{2},\frac{m-1}{2})} \left(\left(\frac{1-x}{(1+b)-(1-b)x}\right) * \left(1-\frac{1-x}{(1+b)-(1-b)x}\right)\right)^{\frac{m-1}{2}-1} \\ =& \frac{1}{\Beta(\frac{m-1}{2},\frac{m-1}{2})} \left(\left(\frac{1-x}{(1+b)-(1-b)x}\right) * \left(\frac{(1+b)-(1-b)x - (1-x)}{(1+b)-(1-b)x}\right)\right)^{\frac{m-3}{2}} \\ =& \frac{1}{\Beta(\frac{m-1}{2},\frac{m-1}{2})} \left(\left(\frac{1-x}{(1+b)-(1-b)x}\right) * \left(\frac{b(1+x)}{(1+b)-(1-b)x}\right)\right)^{\frac{m-3}{2}} \\ =& \frac{1}{\Beta(\frac{m-1}{2},\frac{m-1}{2})} \left(\frac{b(1-x^2)}{[(1+b)-(1-b)x]^2}\right)^{\frac{m-3}{2}} \\ =& \frac{b^{\frac{m-3}{2}}}{\Beta(\frac{m-1}{2},\frac{m-1}{2})} \frac{(1-x^2)^{\frac{m-3}{2}}}{[(1+b)-(1-b)x]^{m-3}} \\ =& e(x,b) ~~~~~ 其中 ~ x \in (-1,1), b \in (0,1) \end{aligned} ======f((1+b)(1b)x1x;2m1,2m1)B(2m1,2m1)1(((1+b)(1b)x1x)(1(1+b)(1b)x1x))2m11B(2m1,2m1)1(((1+b)(1b)x1x)((1+b)(1b)x(1+b)(1b)x(1x)))2m3B(2m1,2m1)1(((1+b)(1b)x1x)((1+b)(1b)xb(1+x)))2m3B(2m1,2m1)1([(1+b)(1b)x]2b(1x2))2m3B(2m1,2m1)b2m3[(1+b)(1b)x]m3(1x2)2m3e(x,b)     其中 x(1,1),b(0,1) 与论文 Computer Generation of Distributions on the m-spher [1] 不一致, 但我不知道问题出在哪里. 论文里明明说:

却给出了:

由拒绝采样法的 f r a d i a l ( x ; κ , m ) ≤ M ∗ e ( x , b ) f_{radial}(x;\kappa,m) \le M*e(x,b) fradial(x;κ,m)Me(x,b), 计算: M = max ⁡ x f r a d i a l ( x ; κ , m ) e ( x , b ) = max ⁡ x ( κ / 2 ) ν Γ ( 1 2 ) Γ ( ν + 1 2 ) I ν ( κ ) ( 1 − x 2 ) m − 3 2 e x p ( κ x ) b m − 3 2 B ( m − 1 2 , m − 1 2 ) ( 1 − x 2 ) m − 3 2 [ ( 1 + b ) − ( 1 − b ) x ] m − 3 = max ⁡ x ( κ / 2 ) ν Γ ( 1 2 ) Γ ( ν + 1 2 ) I ν ( κ ) e x p ( κ x ) b m − 3 2 B ( m − 1 2 , m − 1 2 ) 1 [ ( 1 + b ) − ( 1 − b ) x ] m − 3 = max ⁡ x ( κ / 2 ) ν Γ ( 1 2 ) Γ ( ν + 1 2 ) I ν ( κ ) B ( m − 1 2 , m − 1 2 ) b m − 3 2 [ ( 1 + b ) − ( 1 − b ) x ] m − 3 e x p ( κ x ) \begin{aligned} M &= \max_x \frac{f_{radial}(x;\kappa,m)}{e(x, b)} \\ &= \max_x \frac{ \frac{(\kappa/2)^\nu}{\Gamma({\frac{1}{2}})\Gamma(\nu+{\frac{1}{2}})I_{\nu}(\kappa)} (1-x^2)^{\frac{m-3}{2}} exp(\kappa x) }{ \frac{b^{\frac{m-3}{2}}}{\Beta(\frac{m-1}{2},\frac{m-1}{2})} \frac{(1-x^2)^{\frac{m-3}{2}}}{[(1+b)-(1-b)x]^{m-3}} } \\ &= \max_x \frac{ \frac{(\kappa/2)^\nu}{\Gamma({\frac{1}{2}})\Gamma(\nu+{\frac{1}{2}})I_{\nu}(\kappa)} exp(\kappa x) }{ \frac{b^{\frac{m-3}{2}}}{\Beta(\frac{m-1}{2},\frac{m-1}{2})} \frac{1}{[(1+b)-(1-b)x]^{m-3}} } \\ &= \max_x \frac{(\kappa/2)^\nu}{\Gamma({\frac{1}{2}})\Gamma(\nu+{\frac{1}{2}})I_{\nu}(\kappa)} \frac{\Beta(\frac{m-1}{2},\frac{m-1}{2})}{b^{\frac{m-3}{2}}} [(1+b)-(1-b)x]^{m-3} exp(\kappa x) \end{aligned} M=xmaxe(x,b)fradial(x;κ,m)=xmaxB(2m1,2m1)b2m3[(1+b)(1b)x]m3(1x2)2m3Γ(21)Γ(ν+21)Iν(κ)(κ/2)ν(1x2)2m3exp(κx)=xmaxB(2m1,2m1)b2m3[(1+b)(1b)x]m31Γ(21)Γ(ν+21)Iν(κ)(κ/2)νexp(κx)=xmaxΓ(21)Γ(ν+21)Iν(κ)(κ/2)νb2m3B(2m1,2m1)[(1+b)(1b)x]m3exp(κx) 接下来求极值点: ∂ ( [ ( 1 + b ) − ( 1 − b ) x ] m − 3 e x p ( κ x ) ) ∂ x = ( m − 3 ) [ ( 1 + b ) − ( 1 − b ) x ] m − 4 ∗ [ − ( 1 − b ) ] e x p ( κ x ) + [ ( 1 + b ) − ( 1 − b ) x ] m − 3 κ e x p ( κ x ) = 0 ⇒ ( m − 3 ) ∗ [ − ( 1 − b ) ] + [ ( 1 + b ) − ( 1 − b ) x ] κ = 0 ( 1 + b ) − ( 1 − b ) x = ( m − 3 ) ( 1 − b ) κ ( 1 − b ) x = ( 1 + b ) − ( m − 3 ) ( 1 − b ) κ 解 :   x 0 = 1 + b 1 − b − m − 3 κ \begin{aligned} & \frac{\partial \left([(1+b)-(1-b)x]^{m-3} exp(\kappa x)\right)}{\partial x} \\ =& (m-3)[(1+b)-(1-b)x]^{m-4} * [-(1-b)] exp(\kappa x) \\ +& [(1+b)-(1-b)x]^{m-3} \kappa exp(\kappa x) = 0 \\ \Rightarrow \\ & (m-3) * [-(1-b)] + [(1+b)-(1-b)x] \kappa = 0 \\ & (1+b)-(1-b)x = \frac{(m-3)(1-b)}{\kappa} \\ & (1-b)x = (1+b) - \frac{(m-3)(1-b)}{\kappa} \\ & 解:~ x_0 = \frac{1+b}{1-b} - \frac{m-3}{\kappa} \end{aligned} =+x([(1+b)(1b)x]m3exp(κx))(m3)[(1+b)(1b)x]m4[(1b)]exp(κx)[(1+b)(1b)x]m3κexp(κx)=0(m3)[(1b)]+[(1+b)(1b)x]κ=0(1+b)(1b)x=κ(m3)(1b)(1b)x=(1+b)κ(m3)(1b): x0=1b1+bκm3 因为 b ∈ ( 0 , 1 ) , x ∈ [ − 1 , 1 ] b \in (0,1), x \in [-1, 1] b(0,1),x[1,1], 所以 ( 1 + b ) − ( 1 − b ) x ≥ 0 (1+b)-(1-b)x \ge 0 (1+b)(1b)x0, 可知, 在经过简约之后, ∂ ( [ ( 1 + b ) − ( 1 − b ) x ] m − 3 e x p ( κ x ) ) ∂ x \frac{\partial \left([(1+b)-(1-b)x]^{m-3} exp(\kappa x)\right)}{\partial x} x([(1+b)(1b)x]m3exp(κx)) 的符号不变, ( m − 3 ) ∗ [ − ( 1 − b ) ] + [ ( 1 + b ) − ( 1 − b ) x ] κ (m-3) * [-(1-b)] + [(1+b)-(1-b)x] \kappa (m3)[(1b)]+[(1+b)(1b)x]κ 是线性的, 单调递减. 那么 f r a d i a l ( x ; κ , m ) e ( x , b ) \frac{f_{radial}(x;\kappa,m)}{e(x, b)} e(x,b)fradial(x;κ,m) 先曾后减, 在 x 0 x_0 x0 处取得最大值.

代入之后, 求得 M M M, 为使接受率最大化(最小化 M M M), 对 b b b 求导: ∂ ( [ ( 1 + b ) − ( 1 − b ) x 0 ] m − 3 e x p ( κ x 0 ) b m − 3 2 ) ∂ b = e x p ( − m − 3 κ ) ∂ ( [ ( m − 3 ) ( 1 − b ) κ ] m − 3 e x p ( κ 1 + b 1 − b ) b m − 3 2 ) ∂ b = ( m − 3 κ ) m − 3 e x p ( − m − 3 κ ) ∂ ( ( 1 − b ) m − 3 e x p ( κ 1 + b 1 − b ) b m − 3 2 ) ∂ b = 0 ⇒ = ∂ ( ( 1 − b ) m − 3 e x p ( κ 1 + b 1 − b ) b m − 3 2 ) ∂ b = 0 = m − 3 2 ( 1 − 1 b 2 ) ( b + 1 b − 2 ) m − 5 2 e x p ( κ 1 + b 1 − b ) + ( b + 1 b − 2 ) m − 3 2 2 κ ( 1 − b ) 2 e x p ( κ 1 + b 1 − b ) ⇒ m − 3 2 ( 1 − 1 b 2 ) + ( b + 1 b − 2 ) 2 κ ( 1 − b ) 2 = 0 ( m − 3 ) ( 1 − 1 b 2 ) + 4 κ b = 0 ( m − 3 ) ( b 2 − 1 ) + 4 κ b = 0 = ( m − 3 ) b 2 + 4 κ b − ( m − 3 ) 解 :   b 0 = − 2 κ + 4 κ 2 + ( m − 3 ) 2 m − 3 ∈ ( 0 , 1 ) \begin{aligned} & \frac{\partial \left( \frac{[(1+b)-(1-b)x_0]^{m-3} exp(\kappa x_0)}{b^{\frac{m-3}{2}}} \right)}{\partial b} \\ =& exp(-\frac{m-3}{\kappa}) \frac{\partial \left( \frac{[\frac{(m-3)(1-b)}{\kappa}]^{m-3} exp(\kappa \frac{1+b}{1-b})}{b^{\frac{m-3}{2}}} \right)}{\partial b} \\ =& \left(\frac{m-3}{\kappa}\right)^{m-3} exp(-\frac{m-3}{\kappa}) \frac{\partial \left( \frac{(1-b)^{m-3} exp(\kappa \frac{1+b}{1-b})}{b^{\frac{m-3}{2}}} \right)}{\partial b} = 0 \\ \Rightarrow \\ =& \frac{\partial \left( \frac{(1-b)^{m-3} exp(\kappa \frac{1+b}{1-b})}{b^{\frac{m-3}{2}}} \right)}{\partial b} = 0 \\ =& \frac{m-3}{2} (1-\frac{1}{b^2}) (b+\frac{1}{b}-2)^{\frac{m-5}{2}} exp(\kappa \frac{1+b}{1-b}) + (b+\frac{1}{b}-2)^{\frac{m-3}{2}} \frac{2\kappa}{(1-b)^2} exp(\kappa \frac{1+b}{1-b}) \\ \Rightarrow \\ & \frac{m-3}{2} (1-\frac{1}{b^2}) + (b+\frac{1}{b}-2) \frac{2\kappa}{(1-b)^2} = 0 \\ & (m-3)(1-\frac{1}{b^2}) + \frac{4\kappa}{b} = 0 \\ & (m-3)(b^2-1) + 4\kappa b = 0 \\ =& (m-3)b^2 + 4\kappa b - (m-3) \\ & 解:~ b_0 = \frac{-2\kappa+\sqrt{4\kappa^2+(m-3)^2}}{m-3} \in (0,1) \end{aligned} =====b(b2m3[(1+b)(1b)x0]m3exp(κx0))exp(κm3)b(b2m3[κ(m3)(1b)]m3exp(κ1b1+b))(κm3)m3exp(κm3)b(b2m3(1b)m3exp(κ1b1+b))=0b(b2m3(1b)m3exp(κ1b1+b))=02m3(1b21)(b+b12)2m5exp(κ1b1+b)+(b+b12)2m3(1b)22κexp(κ1b1+b)2m3(1b21)+(b+b12)(1b)22κ=0(m3)(1b21)+b4κ=0(m3)(b21)+4κb=0(m3)b2+4κb(m3): b0=m32κ+4κ2+(m3)2 (0,1)

如果把 ( m − 3 ) > 0 (m-3) \gt 0 (m3)>0 2 κ > 0 2\kappa \gt 0 2κ>0 都看作三角形的直角边, 4 κ 2 + ( m − 3 ) 2 \sqrt{4\kappa^2+(m-3)^2} 4κ2+(m3)2 为斜边, 则 b 0 = s e c θ − t a n θ b_0 = sec\theta - tan\theta b0=secθtanθ, 又 θ ∈ ( 0 , π 2 ) \theta \in (0, \frac{\pi}{2}) θ(0,2π), 故 b 0 ∈ ( 0 , 1 ) b_0 \in (0,1) b0(0,1)

所有的简约都不改变 ∂ M ∂ b \frac{\partial M}{\partial b} bM 的符号, 所以, M M M 随 b 先减后增, b 0 b_0 b0 M M M 的最小值点.

以上所有的计算中, 对于原论文中的 e ( x , b ) e(x,b) e(x,b) 和本博文计算的 e ( x , b ) e(x,b) e(x,b), 差别只在于 ( m − 1 ) (m-1) (m1) ( m − 3 ) (m-3) (m3), 其他都一样. 继续计算 x 0 x_0 x0: 1 + b 0 = 1 + − 2 κ + 4 κ 2 + ( m − 3 ) 2 m − 3 = m − 3 − 2 κ + 4 κ 2 + ( m − 3 ) 2 m − 3 = m − 3 + 4 κ 2 + ( m − 3 ) 2 − 2 κ m − 3 1 − b 0 = 1 − − 2 κ + 4 κ 2 + ( m − 3 ) 2 m − 3 = m − 3 + 2 κ − 4 κ 2 + ( m − 3 ) 2 m − 3 = m − 3 + 2 κ − 4 κ 2 + ( m − 3 ) 2 m − 3 x 0 = 1 + b 0 1 − b 0 − m − 3 κ = m − 3 − 2 κ + 4 κ 2 + ( m − 3 ) 2 m − 3 + 2 κ − 4 κ 2 + ( m − 3 ) 2 − m − 3 κ = ( m − 3 + 4 κ 2 + ( m − 3 ) 2 − 2 κ ) ( m − 3 + 4 κ 2 + ( m − 3 ) 2 + 2 κ ) ( m − 3 + 2 κ ) 2 − ( 4 κ 2 + ( m − 3 ) 2 ) − m − 3 κ = ( m − 3 + 4 κ 2 + ( m − 3 ) 2 ) 2 − 4 κ 2 ( m − 3 ) 2 + 4 κ 2 + 4 κ ( m − 3 ) − ( 4 κ 2 + ( m − 3 ) 2 ) − m − 3 κ = ( m − 3 ) 2 + 4 κ 2 + ( m − 3 ) 2 + 2 ( m − 3 ) 4 κ 2 + ( m − 3 ) 2 − 4 κ 2 4 κ ( m − 3 ) − m − 3 κ = 2 ( m − 3 ) 2 + 2 ( m − 3 ) 4 κ 2 + ( m − 3 ) 2 4 κ ( m − 3 ) − m − 3 κ = ( m − 3 ) + 4 κ 2 + ( m − 3 ) 2 2 κ − 2 ( m − 3 ) 2 κ = − ( m − 3 ) + 4 κ 2 + ( m − 3 ) 2 2 κ ∈ ( 0 , 1 ) 1 − b 0 1 + b 0 = m − 3 + 2 κ − 4 κ 2 + ( m − 3 ) 2 m − 3 − 2 κ + 4 κ 2 + ( m − 3 ) 2 = [ m − 3 + 2 κ − 4 κ 2 + ( m − 3 ) 2 ] [ ( m − 3 − 2 κ ) − 4 κ 2 + ( m − 3 ) 2 ] [ ( m − 3 − 2 κ ) + 4 κ 2 + ( m − 3 ) 2 ] [ ( m − 3 − 2 κ ) − 4 κ 2 + ( m − 3 ) 2 ] = [ ( m − 3 − 4 κ 2 + ( m − 3 ) 2 ) + 2 κ ] [ ( m − 3 − 4 κ 2 + ( m − 3 ) 2 ) − 2 κ ] ( m − 3 − 2 κ ) 2 − [ 4 κ 2 + ( m − 3 ) 2 ] = ( m − 3 − 4 κ 2 + ( m − 3 ) 2 ) 2 − 4 κ 2 [ ( m − 3 ) 2 + 4 κ 2 ] − 4 κ ( m − 3 ) − [ 4 κ 2 + ( m − 3 ) 2 ] = ( m − 3 ) 2 + 4 κ 2 + ( m − 3 ) 2 − 2 ( m − 3 ) 4 κ 2 + ( m − 3 ) 2 − 4 κ 2 − 4 κ ( m − 3 ) = 2 ( m − 3 ) 2 − 2 ( m − 3 ) 4 κ 2 + ( m − 3 ) 2 − 4 κ ( m − 3 ) = − ( m − 3 ) + 4 κ 2 + ( m − 3 ) 2 2 κ = x 0 \begin{aligned} 1 + b_0 &= 1 + \frac{-2\kappa+\sqrt{4\kappa^2+(m-3)^2}}{m-3} \\ &= \frac{m-3 -2\kappa+\sqrt{4\kappa^2+(m-3)^2}}{m-3} \\ &= \frac{m-3 + \sqrt{4\kappa^2+(m-3)^2} -2\kappa}{m-3} \\ 1 - b_0 &= 1 - \frac{-2\kappa+\sqrt{4\kappa^2+(m-3)^2}}{m-3} \\ &= \frac{m-3 + 2\kappa - \sqrt{4\kappa^2+(m-3)^2}}{m-3} \\ &= \frac{m-3 + 2\kappa - \sqrt{4\kappa^2+(m-3)^2}}{m-3} \\ x_0 &= \frac{1+b_0}{1-b_0} - \frac{m-3}{\kappa} \\ &= \frac{m-3 - 2\kappa + \sqrt{4\kappa^2+(m-3)^2}}{m-3 + 2\kappa - \sqrt{4\kappa^2+(m-3)^2}} - \frac{m-3}{\kappa} \\ &= \frac{ (m-3 + \sqrt{4\kappa^2+(m-3)^2} - 2\kappa) (m-3 + \sqrt{4\kappa^2+(m-3)^2} + 2\kappa) }{(m-3 + 2\kappa)^2 - (4\kappa^2+(m-3)^2)} - \frac{m-3}{\kappa} \\ &= \frac{(m-3 + \sqrt{4\kappa^2+(m-3)^2})^2 - 4\kappa^2}{ (m-3)^2 + 4\kappa^2 + 4\kappa(m-3) - (4\kappa^2+(m-3)^2) } - \frac{m-3}{\kappa} \\ &= \frac{ (m-3)^2 + 4\kappa^2+(m-3)^2 + 2(m-3)\sqrt{4\kappa^2+(m-3)^2} - 4\kappa^2 }{4\kappa(m-3)} - \frac{m-3}{\kappa} \\ &= \frac{2(m-3)^2 + 2(m-3)\sqrt{4\kappa^2+(m-3)^2}}{4\kappa(m-3)} - \frac{m-3}{\kappa} \\ &= \frac{(m-3) + \sqrt{4\kappa^2+(m-3)^2}}{2\kappa} - \frac{2(m-3)}{2\kappa} \\ &= \frac{-(m-3) + \sqrt{4\kappa^2+(m-3)^2}}{2\kappa} \in(0,1) \\ \frac{1-b_0}{1+b_0} =& \frac{m-3 + 2\kappa - \sqrt{4\kappa^2+(m-3)^2}}{m-3 - 2\kappa + \sqrt{4\kappa^2+(m-3)^2}} \\ =& \frac{ [m-3 + 2\kappa - \sqrt{4\kappa^2+(m-3)^2}][(m-3 - 2\kappa) - \sqrt{4\kappa^2+(m-3)^2}] }{ [(m-3 - 2\kappa) + \sqrt{4\kappa^2+(m-3)^2}][(m-3 - 2\kappa) - \sqrt{4\kappa^2+(m-3)^2}] } \\ =& \frac{ [(m-3 - \sqrt{4\kappa^2+(m-3)^2}) + 2\kappa ][(m-3 - \sqrt{4\kappa^2+(m-3)^2}) - 2\kappa] }{ (m-3 - 2\kappa)^2 - [4\kappa^2+(m-3)^2] } \\ =& \frac{ (m-3 - \sqrt{4\kappa^2+(m-3)^2})^2 - 4\kappa^2 }{ [(m-3)^2 + 4\kappa^2] - 4\kappa(m-3) - [4\kappa^2+(m-3)^2] } \\ =& \frac{ (m-3)^2 + 4\kappa^2+(m-3)^2 - 2(m-3)\sqrt{4\kappa^2+(m-3)^2} - 4\kappa^2 }{ -4\kappa(m-3) } \\ =& \frac{2(m-3)^2 - 2(m-3)\sqrt{4\kappa^2+(m-3)^2}}{-4\kappa(m-3)} \\ =& \frac{-(m-3) + \sqrt{4\kappa^2+(m-3)^2}}{2\kappa} = x_0 \end{aligned} 1+b01b0x01+b01b0========1+m32κ+4κ2+(m3)2 =m3m32κ+4κ2+(m3)2 =m3m3+4κ2+(m3)2 2κ=1m32κ+4κ2+(m3)2 =m3m3+2κ4κ2+(m3)2 =m3m3+2κ4κ2+(m3)2 =1b01+b0κm3=m3+2κ4κ2+(m3)2 m32κ+4κ2+(m3)2 κm3=(m3+2κ)2(4κ2+(m3)2)(m3+4κ2+(m3)2 2κ)(m3+4κ2+(m3)2 +2κ)κm3=(m3)2+4κ2+4κ(m3)(4κ2+(m3)2)(m3+4κ2+(m3)2 )24κ2κm3=4κ(m3)(m3)2+4κ2+(m3)2+2(m3)4κ2+(m3)2 4κ2κm3=4κ(m3)2(m3)2+2(m3)4κ2+(m3)2 κm3=2κ(m3)+4κ2+(m3)2 2κ2(m3)=2κ(m3)+4κ2+(m3)2 (0,1)m32κ+4κ2+(m3)2 m3+2κ4κ2+(m3)2 [(m32κ)+4κ2+(m3)2 ][(m32κ)4κ2+(m3)2 ][m3+2κ4κ2+(m3)2 ][(m32κ)4κ2+(m3)2 ](m32κ)2[4κ2+(m3)2][(m34κ2+(m3)2 )+2κ][(m34κ2+(m3)2 )2κ][(m3)2+4κ2]4κ(m3)[4κ2+(m3)2](m34κ2+(m3)2 )24κ24κ(m3)(m3)2+4κ2+(m3)22(m3)4κ2+(m3)2 4κ24κ(m3)2(m3)22(m3)4κ2+(m3)2 2κ(m3)+4κ2+(m3)2 =x0 采样一个 u ∼ U n i f o r m ( 0 , 1 ) u \sim Uniform(0,1) uUniform(0,1), y ∼ B e ( m − 1 2 , m − 1 2 ) ⇒ x = 1 − ( 1 + b 0 ) y 1 − ( 1 − b 0 ) y ∼ e ( x , b 0 ) y \sim Be(\frac{m-1}{2},\frac{m-1}{2}) \Rightarrow x = \frac{1-(1+b_0)y}{1-(1-b_0)y} \sim e(x,b_0) yBe(2m1,2m1)x=1(1b0)y1(1+b0)ye(x,b0) u < f r a d i a l ( x ; κ , m ) M ∗ e ( x , b 0 ) u \lt \frac{f_{radial}(x;\kappa,m)}{M*e(x,b_0)} u<Me(x,b0)fradial(x;κ,m) 时, 接受 x x x 为样本. f r a d i a l ( x ; κ , m ) M ∗ e ( x , b 0 ) = f r a d i a l ( x ; κ , m ) M f ( 1 − x ( 1 + b 0 ) − ( 1 − b 0 ) x ; m − 1 2 , m − 1 2 ) = ( κ / 2 ) ν Γ ( 1 2 ) Γ ( ν + 1 2 ) I ν ( κ ) B ( m − 1 2 , m − 1 2 ) b 0 m − 3 2 [ ( 1 + b 0 ) − ( 1 − b 0 ) x ] m − 3 e x p ( κ x ) / M = [ ( 1 + b 0 ) − ( 1 − b 0 ) x ] m − 3 e x p ( κ x ) [ ( 1 + b 0 ) − ( 1 − b 0 ) x 0 ] m − 3 e x p ( κ x 0 ) = ( ( 1 + b 0 ) − ( 1 − b 0 ) x ( 1 + b 0 ) − ( 1 − b 0 ) x 0 ) m − 3 e x p ( κ ( x − x 0 ) ) l o g f r a d i a l ( x ; κ , m ) M ∗ e ( x , b 0 ) = ( m − 3 ) l o g ( ( 1 + b 0 ) − ( 1 − b 0 ) x ( 1 + b 0 ) − ( 1 − b 0 ) x 0 ) + κ ( x − x 0 ) = ( m − 3 ) l o g ( 1 − 1 − b 0 1 + b 0 x 1 − 1 − b 0 1 + b 0 x 0 ) + κ ( x − x 0 ) = ( m − 3 ) l o g ( 1 − x 0 x 1 − x 0 2 ) + κ ( x − x 0 ) = ( m − 3 ) l o g ( 1 − x 0 x ) − ( m − 3 ) l o g ( 1 − x 0 2 ) + κ ( x − x 0 ) = κ x + ( m − 3 ) l o g ( 1 − x 0 x ) − [ κ x 0 + ( m − 3 ) l o g ( 1 − x 0 2 ) ] = κ x + ( m − 3 ) l o g ( 1 − x 0 x ) − c \begin{aligned} \frac{f_{radial}(x;\kappa,m)}{M*e(x,b_0)} &= \frac{f_{radial}(x;\kappa,m)}{Mf(\frac{1-x}{(1+b_0)-(1-b_0)x}; \frac{m-1}{2}, \frac{m-1}{2})} \\ &= \frac{(\kappa/2)^\nu}{\Gamma({\frac{1}{2}})\Gamma(\nu+{\frac{1}{2}})I_{\nu}(\kappa)} \frac{\Beta(\frac{m-1}{2},\frac{m-1}{2})}{b_0^{\frac{m-3}{2}}} [(1+b_0)-(1-b_0)x]^{m-3} exp(\kappa x) / M \\ &= \frac{[(1+b_0)-(1-b_0)x]^{m-3} exp(\kappa x)}{[(1+b_0)-(1-b_0)x_0]^{m-3} exp(\kappa x_0)} \\ &= \left(\frac{(1+b_0)-(1-b_0)x}{(1+b_0)-(1-b_0)x_0}\right)^{m-3} exp(\kappa (x - x_0)) \\ log\frac{f_{radial}(x;\kappa,m)}{M*e(x,b_0)} &= (m-3) log\left(\frac{(1+b_0)-(1-b_0)x}{(1+b_0)-(1-b_0)x_0}\right) + \kappa (x - x_0) \\ &= (m-3) log\left(\frac{1-\frac{1-b_0}{1+b_0}x}{1-\frac{1-b_0}{1+b_0}x_0}\right) + \kappa (x - x_0) \\ &= (m-3) log\left(\frac{1-x_0x}{1-x_0^2}\right) + \kappa (x - x_0) \\ &= (m-3)log(1-x_0x) - (m-3)log(1-x_0^2) + \kappa (x - x_0) \\ &= \kappa x + (m-3)log(1-x_0x) - [\kappa x_0 + (m-3)log(1-x_0^2)] \\ &= \kappa x + (m-3)log(1-x_0x) - c \end{aligned} Me(x,b0)fradial(x;κ,m)logMe(x,b0)fradial(x;κ,m)=Mf((1+b0)(1b0)x1x;2m1,2m1)fradial(x;κ,m)=Γ(21)Γ(ν+21)Iν(κ)(κ/2)νb02m3B(2m1,2m1)[(1+b0)(1b0)x]m3exp(κx)/M=[(1+b0)(1b0)x0]m3exp(κx0)[(1+b0)(1b0)x]m3exp(κx)=((1+b0)(1b0)x0(1+b0)(1b0)x)m3exp(κ(xx0))=(m3)log((1+b0)(1b0)x0(1+b0)(1b0)x)+κ(xx0)=(m3)log(11+b01b0x011+b01b0x)+κ(xx0)=(m3)log(1x021x0x)+κ(xx0)=(m3)log(1x0x)(m3)log(1x02)+κ(xx0)=κx+(m3)log(1x0x)[κx0+(m3)log(1x02)]=κx+(m3)log(1x0x)c 即, 当 l o g u < κ x + ( m − 3 ) l o g ( 1 − x 0 x ) − c logu < \kappa x + (m-3)log(1-x_0x) - c logu<κx+(m3)log(1x0x)c 时接受样本 x x x. 与 Communications in Statistics - Simulation and Computation [2] 中的判别公式一致了(除了 ( m − 3 ) (m-3) (m3) ( m − 1 ) (m-1) (m1)):

但是与 [1] 不一致, 且 [2] 声称 [1] 的采样方案有问题:
意思大概是作者在实践中并没有的到正确的采样, 且不知道问题出在哪里, 所以他们又根据 [1] 推导了一遍, 得出了上述接受-拒绝判别式. 但, 我也推导了一遍, 发现两者是等价的

问题到底在哪里?

似乎所有的差别就在 e ( x , b ) e(x, b) e(x,b), 到底是: e ( x , b ) = b m − 3 2 B ( m − 1 2 , m − 1 2 ) ( 1 − x 2 ) m − 3 2 [ ( 1 + b ) − ( 1 − b ) x ] m − 3 \begin{aligned} e(x,b) =& \frac{b^{\frac{m-3}{2}}}{\Beta(\frac{m-1}{2},\frac{m-1}{2})} \frac{(1-x^2)^{\frac{m-3}{2}}}{[(1+b)-(1-b)x]^{m-3}} \end{aligned} e(x,b)=B(2m1,2m1)b2m3[(1+b)(1b)x]m3(1x2)2m3 还是: e ( x , b ) = 2 b m − 1 2 B ( m − 1 2 , m − 1 2 ) ( 1 − x 2 ) m − 3 2 [ ( 1 + b ) − ( 1 − b ) x ] m − 1 \begin{aligned} e(x,b) =& \frac{2b^{\frac{m-1}{2}}}{\Beta(\frac{m-1}{2},\frac{m-1}{2})} \frac{(1-x^2)^{\frac{m-3}{2}}}{[(1+b)-(1-b)x]^{m-1}} \end{aligned} e(x,b)=B(2m1,2m1)2b2m1[(1+b)(1b)x]m1(1x2)2m3 ? ? ? ? ? ? ? 找到问题出在哪了, 保留以上过程, 以警钟长鸣 ? ? ? ? ? ? ? ?
记住, 永远不要想当然! 概率密度函数的变换不是进行一下变量代换就 OK 了的! 前面 t t t 的概率密度函数推导中, 就知道 t t t θ \theta θ 在变换的时候需要带上 d t , d θ dt, d\theta dt,dθ, 怎么现在就忘了? 根本原因是对知识的理解不够透彻. 我们的研究对象本质上是概率 f ( y ; α , β ) d y f(y; \alpha, \beta)dy f(y;α,β)dy, 而不是概率密度 f ( y ; α , β ) f(y; \alpha, \beta) f(y;α,β), 当进行变量代换时, 不光要变换概率密度中的变量, d y dy dy 也要变换, 甚至求 [ a , b ] [a, b] [a,b] 区间上的概率时, ∫ a b f ( y ; α , β ) d y \int_a^b f(y; \alpha, \beta) dy abf(y;α,β)dy, 积分区间也要变换.

在得到随机变量变换关系: X = 1 − ( 1 + b ) Y 1 − ( 1 − b ) Y ⇔ Y = 1 − X ( 1 + b ) − ( 1 − b ) X \begin{aligned} X = \frac{1-(1+b)Y}{1-(1-b)Y} &\Leftrightarrow Y = \frac{1-X}{(1+b)-(1-b)X} \end{aligned} X=1(1b)Y1(1+b)YY=(1+b)(1b)X1X 后, 假如让你积分求区间 [ y 1 , y 2 ] [y_1,y_2] [y1,y2] 上的概率呢? ∫ y 1 y 2 f ( y ; α , β ) d y = ∫ 1 − x 1 ( 1 + b ) − ( 1 − b ) x 1 1 − x 2 ( 1 + b ) − ( 1 − b ) x 2 f ( 1 − x ( 1 + b ) − ( 1 − b ) x ; α , β ) d ( 1 − x ( 1 + b ) − ( 1 − b ) x ) = ∫ 1 − x 1 ( 1 + b ) − ( 1 − b ) x 1 1 − x 2 ( 1 + b ) − ( 1 − b ) x 2 f ( 1 − x ( 1 + b ) − ( 1 − b ) x ; α , β ) − 2 b [ ( 1 + b ) − ( 1 − b ) x ] 2 d x \begin{aligned} \int_{y_1}^{y_2} f(y; \alpha, \beta) dy &= \int_{\frac{1-x_1}{(1+b)-(1-b)x_1}}^{\frac{1-x_2}{(1+b)-(1-b)x_2}} f\left(\frac{1-x}{(1+b)-(1-b)x}; \alpha, \beta\right) d\left(\frac{1-x}{(1+b)-(1-b)x}\right) \\ &= \int_{\frac{1-x_1}{(1+b)-(1-b)x_1}}^{\frac{1-x_2}{(1+b)-(1-b)x_2}} f\left(\frac{1-x}{(1+b)-(1-b)x}; \alpha, \beta\right) \frac{-2b}{[(1+b)-(1-b)x]^2}dx \end{aligned} y1y2f(y;α,β)dy=(1+b)(1b)x11x1(1+b)(1b)x21x2f((1+b)(1b)x1x;α,β)d((1+b)(1b)x1x)=(1+b)(1b)x11x1(1+b)(1b)x21x2f((1+b)(1b)x1x;α,β)[(1+b)(1b)x]22bdx

d y = d ( 1 − x ( 1 + b ) − ( 1 − b ) x ) = − [ ( 1 + b ) − ( 1 − b ) x ] − ( 1 − x ) [ − ( 1 − b ) ] [ ( 1 + b ) − ( 1 − b ) x ] 2 d x = − ( 1 + b ) + ( 1 − b ) x + ( 1 − b ) − ( 1 − b ) x [ ( 1 + b ) − ( 1 − b ) x ] 2 d x = − 2 b [ ( 1 + b ) − ( 1 − b ) x ] 2 d x \begin{aligned} dy &= d\left(\frac{1-x}{(1+b)-(1-b)x}\right) \\ &= \frac{-[(1+b)-(1-b)x] - (1-x)[-(1-b)]}{[(1+b)-(1-b)x]^2}dx \\ &= \frac{-(1+b)+(1-b)x + (1-b) - (1-b)x}{[(1+b)-(1-b)x]^2}dx \\ &= \frac{-2b}{[(1+b)-(1-b)x]^2}dx \\ \end{aligned} dy=d((1+b)(1b)x1x)=[(1+b)(1b)x]2[(1+b)(1b)x](1x)[(1b)]dx=[(1+b)(1b)x]2(1+b)+(1b)x+(1b)(1b)xdx=[(1+b)(1b)x]22bdx

由于 − 2 b [ ( 1 + b ) − ( 1 − b ) x ] 2 < 0 \frac{-2b}{[(1+b)-(1-b)x]^2} \lt 0 [(1+b)(1b)x]22b<0, 变量 x , y x, y x,y 之间是负相关的, 那么积分式写为: ∫ 1 − x 2 ( 1 + b ) − ( 1 − b ) x 2 1 − x 1 ( 1 + b ) − ( 1 − b ) x 1 f ( 1 − x ( 1 + b ) − ( 1 − b ) x ; α , β ) 2 b [ ( 1 + b ) − ( 1 − b ) x ] 2 d x \begin{aligned} \int_{\frac{1-x_2}{(1+b)-(1-b)x_2}}^{\frac{1-x_1}{(1+b)-(1-b)x_1}} f\left(\frac{1-x}{(1+b)-(1-b)x}; \alpha, \beta\right) \frac{2b}{[(1+b)-(1-b)x]^2}dx \end{aligned} (1+b)(1b)x21x2(1+b)(1b)x11x1f((1+b)(1b)x1x;α,β)[(1+b)(1b)x]22bdx 所以, 关于 x x x 的概率密度函数是: e ( x , b ) = f ( 1 − x ( 1 + b ) − ( 1 − b ) x ; α , β ) 2 b [ ( 1 + b ) − ( 1 − b ) x ] 2 = b m − 3 2 B ( m − 1 2 , m − 1 2 ) ( 1 − x 2 ) m − 3 2 [ ( 1 + b ) − ( 1 − b ) x ] m − 3 2 b [ ( 1 + b ) − ( 1 − b ) x ] 2 = 2 b m − 1 2 B ( m − 1 2 , m − 1 2 ) ( 1 − x 2 ) m − 3 2 [ ( 1 + b ) − ( 1 − b ) x ] m − 1 \begin{aligned} e(x, b) =& f\left(\frac{1-x}{(1+b)-(1-b)x}; \alpha, \beta\right) \frac{2b}{[(1+b)-(1-b)x]^2} \\ =& \frac{b^{\frac{m-3}{2}}}{\Beta(\frac{m-1}{2},\frac{m-1}{2})} \frac{(1-x^2)^{\frac{m-3}{2}}}{[(1+b)-(1-b)x]^{m-3}} \frac{2b}{[(1+b)-(1-b)x]^2} \\ =& \frac{2b^{\frac{m-1}{2}}}{\Beta(\frac{m-1}{2},\frac{m-1}{2})} \frac{(1-x^2)^{\frac{m-3}{2}}}{[(1+b)-(1-b)x]^{m-1}} \end{aligned} e(x,b)===f((1+b)(1b)x1x;α,β)[(1+b)(1b)x]22bB(2m1,2m1)b2m3[(1+b)(1b)x]m3(1x2)2m3[(1+b)(1b)x]22bB(2m1,2m1)2b2m1[(1+b)(1b)x]m1(1x2)2m3 这下一致了.

平均接受率

在拒绝采样法的简介中说: 平均接受率为 1 c \frac{1}{c} c1, 那么本拒绝采样法的平均接受率为 1 M \frac{1}{M} M1. 1 M = e ( x 0 , b 0 ) f ( x 0 , κ , m ) \begin{aligned} \frac{1}{M} = \frac{e(x_0, b_0)}{f(x_0, \kappa, m)} \end{aligned} M1=f(x0,κ,m)e(x0,b0) 公式太过复杂, 简化无果后, 在 desmos 网站画出了其 κ , m \kappa, m κ,m 变化的图像(计算比较复杂,可能需要等一会儿图像才会出来):

可见, 接受率还是比较高的, 趋势大概是: m m m 越大, 接受率越高, κ \kappa κ 越大, 接受率越低. 但即使在 m = 4 , κ = 20 m=4, \kappa=20 m=4,κ=20 时, 接受率依然大于 0.7 0.7 0.7.

下面给出了 ( m = 50 , κ = 5 ) (m=50,\kappa=5) (m=50,κ=5) ( m = 5 , κ = 20 ) (m=5,\kappa=20) (m=5,κ=20) 时, f r a d i a l ( x ; κ , m ) f_{radial}(x;\kappa,m) fradial(x;κ,m) M ∗ e ( x , b 0 ) M*e(x, b_0) Me(x,b0) 的图像(前者为蓝色, 后者为黑色). 可见, 当 ( m = 50 , κ = 5 ) (m=50,\kappa=5) (m=50,κ=5) 时, 两个图像几乎是重合的; 当 ( m = 5 , κ = 20 ) (m=5,\kappa=20) (m=5,κ=20) 时, 两者出现了较大出入, 表现为接受率的下降.

参考文献

[1] Computer Generation of Distributions on the m-spher.
[2] Communications in Statistics - Simulation and Computation.

  • 4
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值