题意:
给定n个数,要求从中选出4个数,使得这4个数的最大公因子为1,求满足条件的组数。
思路:
简单的容斥,用f(x)表示最大公因子为x的倍数的组数,那么答案为:
ans =
代码:
#include<cstdio>
#include<vector>
#include<cstring>
using namespace std;
const int N = 1e4+10;
int mu[N];
bool Np[N];
vector<int>pr;
vector<int>E[N];
int num[N];
void init(){
mu[1] = 1;
for(int i=2;i<N;i++){
if(!Np[i]){
pr.push_back(i);
mu[i] = -1;
}for(int j=0;j<pr.size();j++){
int t = pr[j] * i;
if(t>N)break;
Np[t] = true;
if(i%pr[j]==0){
mu[t] = 0;
break;
}mu[t] = -mu[i];
}
}
for(int i=1;i<N;i++){
for(int j=i;j<N;j+=i){
E[j].push_back(i);
}
}
}
long long C(int n){
if(n<4)return 0;
long long res = 1;
for(int i=0;i<4;i++){
res *= (n-i);
}for(int i=2;i<=4;i++){
res /= i;
}return res;
}
int main()
{
init();
int n,x;
while(scanf("%d",&n)==1){
memset(num,0,sizeof(num));
int m = 0;
while(n--){
scanf("%d",&x);m = max(m,x);
for(int i=0;i<E[x].size();i++){
int j = E[x][i];
num[j]++;
}
}long long ans = 0;
for(int i=1;i<=m;i++){
if(mu[i]){
ans += 1LL * mu[i] * C(num[i]);
}
}printf("%lld\n",ans);
}return 0;
}