poj 1695 (莫比乌斯反演)

题意:

给五个数1,b,1,d,k,在[a ,b]内选一个数x,在[c, d]内选一个数y,使得gcd(x,y) = k,求这样的数的对数。


解析:

可以用容斥来做,也可以莫比乌斯反演。

先上结论:

从    1到M    和   1到N   (M  < N)各选一个数,组成gcd(x,y) = 1 的个数是:

LL ans = 0;
for (int i = 1; i <= M; i++)
{
    ans += mu[i] * (M / i) * (N / i);
}

尝试证明一下:

...(1d later)

尝试失败。

唯独找到的证明,只理解了一点:

http://www.isnowfy.com/mobius-inversion/


这题先把范围缩小到[1/k, b/k] ,  [1/k, d/k],

然后先算各从一段[1 ,M] , [1 , n ] 取到多少对,因为第一段重复算了一次,所以之后-掉第一段。


代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <stack>
#include <vector>
#include <queue>
#include <map>
#include <climits>
#include <cassert>
#define LL long long

using namespace std;

const int maxn = 1000000 + 10;

bool check[maxn];
int prime[maxn];
int mu[maxn];
void Moblus()
{
    memset(check,false,sizeof(check));
    mu[1] = 1;
    int tot = 0;
    for(int i = 2; i <= maxn; i++)
    {
        if( !check[i] )
        {
            prime[tot++] = i;
            mu[i] = -1;
        }
        for(int j = 0; j < tot; j++)
        {
            if(i * prime[j] > maxn) break;
            check[i * prime[j]] = true;
            if( i % prime[j] == 0)
            {
                mu[i * prime[j]] = 0;
                break;
            }
            else
            {
                mu[i * prime[j]] = -mu[i];
            }
        }
    }
}

int main()
{
#ifdef LOCAL
    freopen("in.txt", "r", stdin);
#endif // LOCAL
    Moblus();
    int a, b, c, d, k;
    int ncase;
    int ca = 1;
    scanf("%d", &ncase);
    while (ncase--)
    {
        scanf("%d%d%d%d%d", &a, &b, &c, &d, &k);
        if (k == 0)
        {
            printf("Case %d: 0\n", ca++);
        }
        else
        {
            b /= k;
            d /= k;
            if (b > d)
                swap(b, d);
            LL ans1 = 0;
            for (int i = 1; i <= b; i++)
                ans1 += (LL)mu[i] * (b / i) * (d / i);
            LL ans2 = 0;
            for (int i = 1; i <= b; i++)
                ans2 += (LL)mu[i] * (b / i) * (b / i);
            ans1 -= ans2 / 2;
            printf("Case %d: %lld\n", ca++, ans1);
        }
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值