HDU-1532 Drainage Ditches (最大流E-K算法)

8 篇文章 0 订阅

题目大意:

有一个农田,为了排水,约翰挖了m条排水沟联通各个节点,问最大水流量是多少。


算法分析:

我之前做一道要用到最大流,于是我去学习最大流算法的解法,看了n篇博客,最后还是看得一知半解,结果最后还是硬生生将模板背了下来,但是不知道为什么要这样做,以后有空再研究研究。
最大流问题的关键是寻找增广路,E-K算法是用队列的方式是查询增广路,然后去增广路上的最小流量,然后每条路径都加上最小流量,对称路径减去最小流量。我花了一些时间,终于将这道题A出来了,最关键的是,这道题会有重边,而且你还不能取最大值,而是累加重边的权值(真是日了狗)。


代码实现:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <iostream>
#include <algorithm>

using namespace std;

struct node
{
    int from;
    int to;
    int flow;
    int cap;
    bool in;
} edge[220][220];

int m, n;
int add[220];
int pre[220];
int Q[220];
bool statu[220];            // 标记当前结点是否已经进入队列

int main()
{
    int x, y, z;

    while (scanf("%d%d", &m, &n) != EOF) {
        int maxn = 0;
        memset(edge, 0, sizeof(edge));
        for (int i = 1; i <= m; i++) {
            scanf("%d%d%d", &x, &y, &z);
            edge[x][y].cap += z;
            edge[x][y].in = edge[y][x].in = true;
        }
        bool flag = true;

        while (flag) {
            int front_, rear_;
            front_ = rear_ = 1;
            flag = false;
            memset(statu, 0, sizeof(statu));
            pre[1] = 0;
            Q[1] = 1;
            add[1] = 1 << 30;
            while (front_ <= rear_ && !flag) {
                int index = Q[front_++];           // 取出队首元素
                for (int i = 1; i <= n; i++) {
                    if (edge[index][i].in && !statu[i] && edge[index][i].cap > edge[index][i].flow && i != pre[index]) {
                        add[i] = min(add[index], edge[index][i].cap-edge[index][i].flow);
                        statu[i] = true;
                        pre[i] = index;
                        Q[++rear_] = i;             // 入队列
                        if (i == n) {
                            flag = true;
                            break;
                        }
                    }
                }
            }
            if (!flag) {
                break;          // 防止反复加
            }
            for (int i = n; i != 1; i = pre[i]) {
                edge[pre[i]][i].flow += add[n];
                edge[i][pre[i]].flow -= add[n];
            }
            maxn += add[n];
        }
        printf("%d\n", maxn);
    }

    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值