算法设计复习(三):最大流(最小切)问题

本文介绍了最大流和最小切问题,详细阐述了s-t切的定义、流的条件和总流量计算。讨论了为什么贪心算法不适用于求解最大流,并详细解析了Ford-Fulkerson算法的步骤,包括剩余图的概念。此外,证明了最大流与最小切相等,并提出寻找更好增广路径的E-K算法,其时间复杂度为O(m^2*logc)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.切(s-t cut)的定义:


最小切问题当然就是找到一个最小的s-t cut

2.流问题:

流是一些s到t的简单路径,满足两个条件:

1)路径中每条边的流量f(e)小于等于容量c(e)

2)路径中每个顶点(除了源点s与汇点t),流入的流量必须等于流出的流量

定义总流量:

3.对于任意s-t割(A,B),s-t流的值等于A的流出值减去A的流入值:


4.s-t flow 一定小于 s-t cut,证明:


很显然,如果一个流等于cap(A,B),它一定即是最大流,又是最小割

5.求解最大流:

1)贪心算法不适用

下图用贪心算法得到最大流是20,显然我们可以得到一个30的流

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值