1154 回文串划分

1154 回文串划分
基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注
有一个字符串S,求S最少可以被划分为多少个回文串。
例如:abbaabaa,有多种划分方式。

a|bb|aabaa - 3 个回文串
a|bb|a|aba|a - 5 个回文串
a|b|b|a|a|b|a|a - 8 个回文串

其中第1种划分方式的划分数量最少。
Input
输入字符串S(S的长度<= 5000)。
Output
输出最少的划分数量。
Input示例
abbaabaa
Output示例
3

也是水题吧 实现有点技巧
暴力的找 更新最小值

dp[i]代表字符串到i最小分配的数量
dp[i]的来源有两个,当前的最小值,和回文串前的最小值。
每次查找到就更新
因为用了manacher 所以 对dp数组进行扩充。

#include<iostream>
#include<algorithm>
using namespace std;
int dp[15005];
int main()
{
    string s;
    while(cin>>s)
    {
        dp[0]=0;
        string a;
        a="!";
        for(int i=0;s[i];i++)
        {
            a+='#';
            a+=s[i];
        } a+="#";
        for(int i=0;a[i];i++)
        {
            dp[i]=(i)/2;
            //cout<<dp[i]<<' '<<' '<<a[i]<<endl;
        }//cout<<endl;

        //cout<<a<<endl;
        int minx=1000000000;
        for(int i=2;a[i];i++)
        {
            int l=0;
            while(i-l>=0&&a[i+l]==a[i-l])
            {
                int x=i+l;
                int y=i-l;
                dp[x]=min(dp[x],dp[y]+1);
                l++;
                //cout<<x<<' '<<dp[x]<<' '<<y<<' '<<dp[y]<<endl;
            }

        }
        //cout<<s.size()<<' '<<dp[2]<<endl;
        cout<<dp[a.size()-1]<<endl;
    }
}
### C++ 实现分割回文串算法 以下是基于回溯法实现的 C++ 代码,用于解决将字符串 `s` 分割成多个回文子串的问题。此方法通过递归和剪枝来枚举所有可能的分割方式。 #### 算法核心逻辑 1. 定义一个辅助函数 `isPalindrome` 来判断给定范围内的子串是否为回文。 2. 使用回溯法尝试每一种可能的分割方案,并记录满足条件的结果到最终结果集中。 3. 遍历整个字符串,在每次遍历时检查当前前缀是否为回文,如果是,则继续处理剩余部分;如果不是,则跳过该分支。 ```cpp #include <iostream> #include <vector> #include <string> using namespace std; // 判断子串 s[left:right] 是否为回文 bool isPalindrome(const string& s, int left, int right) { while (left < right) { if (s[left++] != s[right--]) return false; } return true; } void backtrack(const string& s, vector<vector<string>>& result, vector<string>& path, int start) { if (start >= s.size()) { // 如果已经到达字符串末尾 result.push_back(path); // 将当前路径加入结果集 return; } for (int i = start; i < s.size(); ++i) { if (!isPalindrome(s, start, i)) continue; // 剪枝:如果当前子串不是回文则跳过 path.push_back(s.substr(start, i - start + 1)); // 记录当前回文子串 backtrack(s, result, path, i + 1); // 继续处理下一个位置 path.pop_back(); // 回溯撤销上一步操作 } } vector<vector<string>> partition(string s) { vector<vector<string>> result; vector<string> path; backtrack(s, result, path, 0); return result; } int main() { string input = "aab"; vector<vector<string>> res = partition(input); cout << "All possible palindrome partitions:" << endl; for (const auto& v : res) { for (const auto& str : v) { cout << str << " "; } cout << endl; } return 0; } ``` --- #### 关键点解析 1. **回文检测** 函数 `isPalindrome` 负责快速验证某个区间 `[left, right]` 的子串是否为回文[^1]。它的时间复杂度为 O(n),其中 n 是子串长度。 2. **回溯框架** 主体采用经典的回溯模板,逐步扩展候选解并及时剪枝不合法的情况。当发现某一部分无法构成回文时立即停止进一步探索,从而减少不必要的计算开销[^2]。 3. **时间复杂度分析** 最坏情况下,对于长度为 N 的输入字符串,可能存在指数级数量的不同划分组合。因此整体时间复杂度接近于 O(N * 2^N)[^3]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值