数学复习

数学

考的都是简单题,面试的时候也主要看你对于数学的“悟性”

别去刷题了,就只要给你一个名词你能清楚地讲出来就好。

高等数学

http://gitbook.cn/books/59ee907516fc0231837614e3/index.html

http://www.cnblogs.com/kaggle/p/5682755.html

https://zhuanlan.zhihu.com/p/33794793

https://blog.csdn.net/ZLJ925/article/details/78961748

https://blog.csdn.net/fjssharpsword/article/details/72529529

主要体现在
极值问题 与 (条件)最优化问题

偏导数,梯度这两个概念必须深入人心

还有就是凸优化和条件最优化问题,这个是理解SVM,或者线性回归等等模型正则化的基础。。。

  1. 线性方程组求解
  2. 矩阵的运算
  3. 多远函数极值判断
  4. 中心极限定理(证明,独立同分布的情况)
  5. 第一类和第二类错误
  6. 假设检验
  7. 原假设和备择假设能否互换
  8. 当x很小的时候sinx大于什么东西,我印象中是在x趋于0时sinx > x,我就回答了x,然后他看我回答挺快的就问为什么,直接是x-sinx然后求导证明单调就完事了
  9. 极限;
  10. 常数e;关于常数e网络流传的介绍:http://www.guokr.com/article/50264/;
  11. 极限和常数e是微积分的基础。
  12. 导数和微分;
  13. 导数的四则运算、复合函数求导、偏导;
  14. 海森矩阵;
  15. 梯度;这个关乎于梯度下降法求值;
  16. 泰勒级数;
  17. 牛顿-莱布尼茨公式;关乎牛顿法;
  18. 约束优化;
一元函数
【导数】

函数y = f(x) 在点x0的某个邻域内有定义, 则当自变量x在x0处取得增量 deltax,函数输出值也相应取得增量deltay。如果deltay与deltax的比值在delta_x趋于0时的极限存在,则f(x)在x0处的导数存在,即f(x)在x0处可导。该极限即为f(x)在x0处的导数,记作f’(x0)。如果函数的自变量和取值都是实数的话,那么函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。

【导函数】

若函数 f(x) 在其定义域包含的某区间 I 内每一个点都可导,则成f(x)在区间I内可导。这时对于 I 内每一个确定的 x 值,都对应着 f(x) 的一个确定的导数值,如此一来就构成了一个新的函数 x -> f’(x) 这个函数称作原来函数f(x) 的导函数,记作f’(x)。

【可导】

有两种情况: i) 在某点可导:若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。ii)在某区间可导:若某函数在其定义域包含的某个区间内,每一个点都可导,那么就说这个函数在该区间内可导。

【求导】

寻找已知的函数在i) 某点的导数或ii) 其导函数的过程称为求导。

【可微】

一个函数在其定义域中所有点都存在导数,则它是可微的。若X0是函数f(x)定义域上的一点,且f′(X0)有定义,则称f(x)在X0点可微。从图像的角度分析,就是说f(x)的图像在(X0, f(X0))点有非垂直切线,且该点不是间断点、尖点。若f(x)在X0点可微,则f(x)在该点必连续。逆命题则不成立,一个连续函数未必可微——可微必连续,连续未必可微。

【微分】

设函数 y = f(x)在某区间I内有定义,且在其中一点x0处是可微的。即:如果函数y = f(x)的增量deltay = f(x0 + deltax) - f(x0) 可表示为deltay = Adeltax + o(deltax),其中A是不依赖于deltax的常数,而o(deltax)是比deltax高阶的无穷小。其中,Adeltax称作函数f(x)在点x0向应用自变量增量deltax的微分,记作dy,即dy = Adx, dy是deltay的线性主部,dx = deltax.

【可微 vs 可导】

对于一元函数,可微与可导完全等价。可微的函数,其微分等于导数乘以自变量的微分dx,换句话说,函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。于是函数 y = f(x)的微分又可记作 dy = f’(x)dx。

【连续可微】

函数f(x)的导数f’(x)存在且是连续函数,则f(x)连续可微。

多元函数
【偏增量】

设函数z = f(x, y) 在点 (x0, y0)的某邻域内有定义,则f(x + deltax,y) – f(x,y)和 f(x, y + deltay) - f(x, y) 都是它的偏增量。

【全增量】

设函数z = f(x, y) 在点 (x0, y0) 的某邻域内有定义, (x + deltax,y + deltay)为这邻域内的任意一点,则称这两点的函数值之差f(x + deltax,y + deltay)- f(x,y)为函数在点(x0, y0)对应自变量deltax,deltay的全增量,记作delta_z。

【偏导数】

:一个多元函数中,在除了某个变量之外其他变量都保持恒定不变的情况下,关于这个变量的导数,是偏导数。求偏导数时,除了当前变量之外的变量,被认为与当前变量无关。例如求f(x,y)在(x0,y0)处关于x的偏导数,则此时假定y与x无关。

【全导数】

:求全导数中,允许其他变量随着当前变量变化。也就是说求f(x,y) 在(x0,y0)处的全导数的时候,我们假定y随 x变化。

【偏微分】

:指多元函数z=f(x,y)的分别针对x和y微分。f(x,y)关于x和y的偏微分分别为:fx’(x,y)dx 和 fy’(x,y)dy。

【全微分】

:指多元函数z=f(x,y)的全增量delta_z的线性主部,记作dz。 一个多元函数在某点的某邻域内的各个偏导数都存在,且偏导函数在该点都连续,则在该点该多元函数的全微分存在。

【可微】

:一个多元函数在某点的全微分存在,则该函数在该店可微。换言之,如果一个多元函数的所有偏导数在某点的邻域内存在且连续,那么该函数在该点可微。若多元函数在某点可微,则此函数在该点必连续。逆命题也不成立——可微必连续,连续未必可微。

【偏微分和全微分的关系】

:dz= fx’(x,y)dx + fy’(x,y)dy —— 全微分等于偏微分之和。

【夹逼准则】

定理内容:若函数 F(x)G(x)x_{0} 的邻域连续, x\rightarrow x_{0} 时极限都为 A ,即 \lim_{x \rightarrow x_{0}}{F(x)} = \lim_{x \rightarrow x_{0}}{G(x)} = A ,且在该 x_{0} 的邻域一直满足 F(x)\leq f(x) \leq G(x)

则当 x\rightarrow x_{0} 时也有 \lim_{x \rightarrow x_{0}}{F(x)}\leq \lim_{x \rightarrow x_{0}}{f(x)}\leq \lim_{x \rightarrow x_{0}}{G(x)} ,也就是 A\leq\lim_{x \rightarrow x_{0}}{f(x)} \leq A

所以 \lim_{x \rightarrow x_{0}}{f(x)}=A .

简单地说:函数 A>B,函数 B>C,函数 A 的极限是 X,函数 C 的极限也是 X ,那么函数 B 的极限就一定是 X,这就是夹逼定理。

【二阶导数】

是斜率变化快慢的反应,表征曲线的凹凸性

【常用的求导公式】

img

【Taylor公式】

(若x0=0,转化为Maclaurin公式)

img

用Taylor公式近似计算熵

f(x)忽略高阶无穷小,H(X)是熵的计算公式。

img

方向导数与梯度

img

【凸函数】

img

直观上讲,函数曲线两点连线都在曲线的上方。

  • 20
    点赞
  • 126
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值