数学保研面试准备
-
极大似然估计
利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值。通过若干次试验,观察其结果,利用试验结果得到某个参数值能够使样本出现的概率为最大,则称为极大似然估计。用独立同分布的样本集去估计参数θ。
-
求最大似然估计量 θ 的一般步骤:
- 写出似然函数;
- 对似然函数取对数,并整理;
- 求导数;
- 解似然方程。
-
最大似然估计的特:
- 比其他估计方法更加简单;
- 收敛性:无偏或者渐近无偏,当样本数目增加时,收敛性质会更好;
- 如果假设的类条件概率模型正确,则通常能获得较好的结果。但如果假设模型出现偏差,将导致非常差的估计结果。
-
泰勒展开
泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够平滑的话,在已知函数在某一点的各阶导数值的情况下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。
应用:
①计算机的数值计算领域。matlab数学库中就包含很多的初等函数,像sin(x),cos(x)等,
②深度学习中牛顿法是一种二阶梯度方法。牛顿法的前提其实是泰勒展开。
-
古典概型、几何概型
- 古典概型——有限等可能(有限个可能事件,且每个事件都是等可能概率事件)
- 几何概型——无限等可能
-
什么是先验概率?
事情未发生,只根据以往数据统计,分析事情发生的可能性,即先验概率。
指根据以往经验和分析。在实验或采样前就可以得到的概率。
先验概率是指根据以往经验和分析得到的概率,如全概率公式,它往往作为"由因求果"问题中的"因"出现。
-
什么是后验概率?与先验概率的关系?
- 后验概率
事情已发生,已有结果,求引起这事发生的因素的可能性,由果求因,即后验概率。
指某件事已经发生,想要计算这件事发生的原因是由某个因素引起的概率。
后验概率是指依据得到"结果"信息所计算出的最有可能是那种事件发生,如贝叶斯公式中的,是"执果寻因"问题中的"因"。
- 与先验概率的关系
后验概率的计算,是以先验概率为前提条件的。如果只知道事情结果,而不知道先验概率(没有以往数据统计),是无法计算后验概率的。
后验概率的计算需要应用到贝叶斯公式。
- 后验概率
-
全概率公式、贝叶斯公式与先验、后验概率的关系?
全概率公式,总结几种因素,事情发生的概率的并集。由因求果。
贝叶斯公式,事情已经发生,计算引起结果的各因素的概率,由果寻因。同后验概率。
全概率是用原因推结果,贝叶斯是用结果推原因。
-
协方差
从直观上来看,协方差表示的是两个变量总体误差的期望。
如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值时另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值;如果两个变量的变化趋势相反,即其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。
-
相关系数
相关系数也可以看成协方差:一种剔除了两个变量量纲影响、标准化后的特殊协方差。它消除了两个变量变化幅度的影响,而只是单纯反应两个变量每单位变化时的相似程度。
-
相关系数或协方差为0的时候能否说明两个分布无关?为什么?
只能说明不线性相关,不能说明无关。因为在数学期望存在的情况下,独立必不相关,不相关未必独立。
-
大数定律
随机变量的均值依概率收敛于自己的期望。
大数定律通俗一点来讲,就是样本数量很大的时候,样本均值和数学期望充分接近,也就是说当我们大量重复某一相同的实验的时候,其最后的实验结果可能会稳定在某一数值附近。就像抛硬币一样,当我们不断地抛,抛个上千次,甚至上万次,我们会发现,正面或者反面向上的次数都会接近一半,也就是这上万次的样本均值会越来越接近 50 % 50%50% 这个真实均值,随机事件的频率近似于它的概率。
实验次数越多,样本均值趋向于总体的均值。大数定理将属于数理统计的平均值和属于概率论的期望联系在了一起。
-
中心极限定理
大量(n → ∞ )、独立、同分布的随机变量之和,近似服从于一维正态分布。
n个独立同分布的随机变量,当 n 充分大时,其均值服从正态分布。(大量独立同分布的随机变量之和近似服从一维正态分布。)
中心极限定理是说当样本数量无穷大的时候,样本均值的分布呈现正态分布。
实验次数越多,样本均值的分布越趋向于正态分布。
中心极限定理指的是给定一个任意分布的总体。每次从这些总体中随机抽取 n 个抽样,一共抽 m mm 次。 然后把这 m 组抽样分别求出平均值。这些平均值的分布接近正态分布。
-
大数定律和中心极限定理的区别
前者更关注的是样本均值,后者关注的是样本均值的分布,比如说掷色子吧,假设一轮掷色子 n 次,重复了 m 轮,当 n 足够大,大数定律指出这 n次的均值等于随机变量的数学期望,而中心极限定理指出这 m 轮的均值分布符合围绕数学期望的正态分布。