历届试题 波动数列
时间限制:1.0s 内存限制:256.0MB
提交此题
问题描述
观察这个数列:
1 3 0 2 -1 1 -2 …
这个数列中后一项总是比前一项增加2或者减少3。
栋栋对这种数列很好奇,他想知道长度为 n 和为 s 而且后一项总是比前一项增加a或者减少b的整数数列可能有多少种呢?
输入格式
输入的第一行包含四个整数 n s a b,含义如前面说述。
输出格式
输出一行,包含一个整数,表示满足条件的方案数。由于这个数很大,请输出方案数除以100000007的余数。
样例输入
4 10 2 3
样例输出
2
样例说明
这两个数列分别是2 4 1 3和7 4 1 -2。
数据规模和约定
对于10%的数据,1<=n<=5,0<=s<=5,1<=a,b<=5;
对于30%的数据,1<=n<=30,0<=s<=30,1<=a,b<=30;
对于50%的数据,1<=n<=50,0<=s<=50,1<=a,b<=50;
对于70%的数据,1<=n<=100,0<=s<=500,1<=a, b<=50;
对于100%的数据,1<=n<=1000,-1,000,000,000<=s<=1,000,000,000,1<=a, b<=1,000,000。
本题的测试数值的确大!!!
输入给出了所有数的和s,假设该数列的第一个数为i,那么它的取值范围为[s - n * a, s + n * b]。
用搜索搜出所有取值之内数列中后一项总是比前一项增加2或者减少3的情况
#include <iostream>
#include <cstdio>
#include <algorithm>
#define mod 100000007
using namespace std;
long long sum,n,s,a,b;
long long cnt=0;
int dfs(long long x,long long i)
{
sum+=x;
if(i==0)
{
if(sum==s)
{
sum-=x;
cnt++;
cnt%=mod;
return 1;
}
else
{
sum-=x;
return 0;
}
}
dfs(x+a,i-1);
dfs(x-b,i-1);
sum-=x;
}
int main()
{
long long i;
cin>>n>>s>>a>>b;
for(i=s-n*a; i<s+n*b; i++)//输入给出了所有数的和s,假设该数列的第一个数为i,那么它的取值范围为[s - n * a, s + n * b]。
{
sum=0;
dfs(i,n-1);
}
cout<<cnt<<endl;
return 0;
}