hdu6047Maximum Sequence(优先队列)

Maximum Sequence

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1829    Accepted Submission(s): 857


Problem Description
Steph is extremely obsessed with “sequence problems” that are usually seen on magazines: Given the sequence 11, 23, 30, 35, what is the next number? Steph always finds them too easy for such a genius like himself until one day Klay comes up with a problem and ask him about it.

Given two integer sequences {ai} and {bi} with the same length n, you are to find the next n numbers of {ai}:  an+1a2n . Just like always, there are some restrictions on  an+1a2n : for each number  ai , you must choose a number  bk  from {bi}, and it must satisfy  ai ≤max{ aj -j│ bk ≤j<i}, and any  bk  can’t be chosen more than once. Apparently, there are a great many possibilities, so you are required to find max{ 2nn+1ai } modulo  109 +7 .

Now Steph finds it too hard to solve the problem, please help him.
 

Input
The input contains no more than 20 test cases.
For each test case, the first line consists of one integer n. The next line consists of n integers representing {ai}. And the third line consists of n integers representing {bi}.
1≤n≤250000, n≤a_i≤1500000, 1≤b_i≤n.
 

Output
For each test case, print the answer on one line: max{ 2nn+1ai } modulo  109 +7。
 

Sample Input
  
  
4 8 11 8 5 3 1 4 2
 

Sample Output
  
  
27
Hint
For the first sample: 1. Choose 2 from {bi}, then a_2…a_4 are available for a_5, and you can let a_5=a_2-2=9; 2. Choose 1 from {bi}, then a_1…a_5 are available for a_6, and you can let a_6=a_2-2=9;
题意:给定相同的长度串a[i],b[i],在b中取数,每次不能相同,使得满足ai≤max{aj-j│bk≤j<i},例如 a 8 11 8 5 b 3 1 4 2 b取2,则让a的第二个位置到a的第五个位置-2进行第五个位置的值选取,选取值为a[i]-i,其中i为当前位置。 这样取1时,a_2…a_4中取一个值给a[5]} 取出来的值,要求和最大,取余1e+7.
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
#include <iostream>
#define LL long long
#define mod 1000000000+7
using namespace std;
struct node
{
    LL dis,ip,num;
};
struct cmp
{
    bool operator()(node a,node b)
    {
        return a.dis<b.dis;
    }
};
LL b[250010];
int main()
{
    LL n;
    node a;
    while(scanf("%lld",&n)!=EOF)
    {
        priority_queue<node,vector<node>,cmp>Q;
        for(int i=1; i<=n; i++)
        {
            scanf("%d",&a.num);
            a.ip=i;
            a.dis=a.num-a.ip;
            Q.push(a);
            //c[i]=Q.top();

        }
        for(int i=1; i<=n; i++)
            scanf("%lld",&b[i]);
        sort(b+1,b+1+n);
        long long res=0;
        for(int i=1; i<=n; i++)
        {
            while(Q.top().ip<b[i])
                Q.pop();
            node t=Q.top();
            res+=t.dis;
            res%=mod;
            t.ip=n+i;
            t.num=t.dis;
            t.dis-=t.ip;
            Q.push(t);
        }
        printf("%lld\n",res);
    }
    return 0;
}



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值