基于深度学习的时间序列分类[含代码]

本文探讨了深度学习在时间序列分类中的应用,特别是在工业故障诊断领域的潜力。通过实验,使用多层感知器、卷积神经网络和递归神经网络在UCR数据集上进行测试,提供实验环境搭建、数据集介绍、实验设计和实验结果的详细说明。重点介绍了全卷积网络的结构,并展示了一个成功的实验案例。
摘要由CSDN通过智能技术生成

基于深度学习的时间序列分类

引言

目前,深度学习在计算机视觉和语音识别上有了非常广泛的应用,但是在工业应用方面还没有完善的体系,一方面缺乏数据集另一方缺乏优秀的顶级论文。在工业上的故障诊断领域,大多数据都来自于传感器的采集,如是西储大学轴承数据,TE化工数据集等,都是典型的时间序列,因而绝大多数问题可以抽象成时间序列分类(TSC)问题。因此本人准备从时间序列分类出发,用典型的深度学习方法,如多层感知器,卷积神经网络,递归神经网络等去测试UCR数据集(共128个时间序列数据集)和自己仿真的时间序列,由此得到一些启发和规律,再将这些知识迁移到工业上的故障诊断领域。为了方便大家阅读和复现代码,本文就不再有过多的数学推到,多以代码和如何使用代码为主,用最直观的方式去解释一些实验结果。

数据集

在时间序列的数据集中,最权威的就属UCR Time Series,可以说是时间序列界的“Imagnet”,发文章必跑数据集,有一堆大牛在维护,并在2018年秋对其进行了意思大的更新。这个数据集很有意思,下载后解压密码要仔细读其PPT然后在其参考论文中寻找,如果想懒省事的朋友可以直接从这里下载。此数据集包含了128个时间序列数据集,下图为前八个
UCR中前八个数据集
除了前人整理好的数据集数据集,我们在初期还可以自己设计一些简单的,容易识别的数据集来进行入门以及算法的初步筛选。不仅如此,为了探究模型结构的设计所考虑的因素或者验证自己的猜想,都需要有针对性的设计一些时间序列。比如一些单变量时间序列如:
方波,正弦波,锯齿波,等等,如下图所示
各种典型的时间序列
一些简单的多变量时间序列如下图所示
在这里插入图片描述

实验环境搭建

本文的实验使用python语言,所用的开发模型为Tensorflow和带有Tensorflow后端的Keras,所需的环境依赖如下:
1.tensorflow-gpu>=1.2.0
2.keras>=2.0.4
3.scipy
4.numpy
5.pandas
6.scikit-learn>=0.18.2
7.h5py
8.matplotlib
9.joblib>=0.12

尽管存在许多类型的DNN,但在此我们将重点关注用于TSC任务的三种主要DNN架构:多层感知器(MLP),卷积神经网络(CNN)和回声状态网络(ESN)。选择这三种类型的架构,因为它们是被广泛用于end to end深度学习TSC的模型。

实验设计

庞大的高楼是由一块块砖瓦搭建成的,同样的一个精妙的实验也是由一个个最基本的实验单元组成的。本文就如何使用一个数据集对设计好的神经网络进行训练进行设计。
1.选择你要进行训练的数据集,弄明白样本信息以及分类状况,本文以UCR数据集中的Adiac数据集为例进行实验。
数据集信如下:
自动硅藻识别和分类(ADIAC)项目是一项关于根据图像自动识别硅藻(单细胞藻类)的试点研究。 该数据由该项目的博士生Andrei Jalba捐赠,该项目于21世纪初完成。 从阈值图像中提取轮廓。 据推测,时间序列是作为到参考点的距离而生成的。 数据很接近正弦。一个样本如下图所示:

在这里插入图片描述
训练集样本个数:390
测试集样本个数:391
分类种类:39
时间序列长度:176

2.算法选择:
选择全卷积网络(FNC),具体结构如图所示:
在这里插入图片描述
3.评价网络

实验代码

把实验代码和数据集’Adiac’文件夹放到同一个目录里

#!/usr/bin/env 
# -*- coding: utf-8 -*-
"""
Created on Sun Oct 30 20:11:19 2016

@author: stephen
"""
 
from __future__ import print_function
 
from keras.models import Model
from keras.utils import np_utils
import numpy as np
import pandas as pd
import keras 
from keras.callbacks import ReduceLROnPlateau
      
def readucr(filename):
    data = np.loadtxt(filename, delimiter = ',')
    Y = data[:,0]
    X 
### 回答1: 答:使用深度学习时间序列分类代码,可以先用一个多层感知机(MLP)来构建模型,比如:model = Sequential() model.add(Dense(64, input_shape=(time_steps, features))) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(64)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(num_classes)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(X_train, Y_train, epochs=10, batch_size=32) ### 回答2: 深度学习是一种机器学习方法,通过模拟人脑神经网络的结构和工作原理,实现对复杂数据的处理和分析。时间序列分类是将一系列按时间顺序排列的数据样本进行分类的任务。下面是一个使用深度学习方法进行时间序列分类代码示例: 首先,我们需要导入一些必要的库,如TensorFlow和Keras: ``` import tensorflow as tf from tensorflow import keras ``` 然后,我们可以定义一个深度学习模型。以下是一个简单的LSTM模型的示例: ``` model = keras.Sequential() model.add(keras.layers.LSTM(64, input_shape=(None, 1))) model.add(keras.layers.Dense(64, activation='relu')) model.add(keras.layers.Dense(num_classes, activation='softmax')) ``` 在上面的代码中,我们使用了一个LSTM层来处理时间序列数据,并使用全连接层进行分类。 接下来,我们需要编译模型并定义损失函数和优化器: ``` model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) ``` 在上述代码中,我们使用分类交叉熵作为损失函数,并选择Adam优化器来优化模型参数。 接下来,我们可以加载数据并进行预处理。可以使用Pandas库读取和处理时间序列数据: ``` import pandas as pd data = pd.read_csv('data.csv') # 读取数据 # 进行数据预处理和特征工程 # 将数据分为训练集和测试集 train_data = data.iloc[:3000] test_data = data.iloc[3000:] # 准备训练和测试数据 X_train = train_data.drop('label', axis=1).values y_train = train_data['label'].values X_test = test_data.drop('label', axis=1).values y_test = test_data['label'].values # 进行数据归一化等预处理操作 ``` 在数据准备完成后,我们可以使用训练数据训练模型: ``` model.fit(X_train, y_train, batch_size=64, epochs=10, validation_data=(X_test, y_test)) ``` 最后,我们可以使用测试数据评估模型的性能: ``` score = model.evaluate(X_test, y_test) print('Test accuracy:', score[1]) ``` 以上是一个简单的深度学习时间序列分类代码示例。当然,具体的实现还需要根据不同的任务和数据进行调整和优化。 ### 回答3: 深度学习时间序列分类(Time Series Classification)是根据给定时间序列数据来预测其所属类别的任务。下面是一个基于Python的简单示例代码: 首先,导入所需的库和模块: ``` import numpy as np import pandas as pd from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense ``` 接下来,准备示例数据集: ``` # 创建时间序列数据 time_series = np.array([[1, 2, 3, 4, 5], [2, 4, 6, 8, 10], [3, 6, 9, 12, 15], [4, 8, 12, 16, 20]]) labels = np.array([0, 1, 0, 1]) # 每个时间序列对应的类别标签 ``` 然后,对数据进行预处理: ``` x_train = time_series.reshape(time_series.shape[0], time_series.shape[1], 1) # 调整数据形状以适应LSTM模型 y_train = pd.get_dummies(labels).values # 将类别标签进行独热编码 ``` 接下来,构建深度学习模型: ``` model = Sequential() model.add(LSTM(64, input_shape=(time_series.shape[1], 1))) # 添加LSTM层 model.add(Dense(2, activation='softmax')) # 添加输出层,采用softmax激活函数 model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # 编译模型 ``` 最后,训练和评估模型: ``` model.fit(x_train, y_train, epochs=10, batch_size=1) # 训练模型 # 在新数据上进行预测 new_time_series = np.array([[5, 10, 15, 20, 25], [6, 12, 18, 24, 30]]) x_test = new_time_series.reshape(new_time_series.shape[0], new_time_series.shape[1], 1) predictions = model.predict(x_test) ``` 这个简单的示例代码演示了如何使用深度学习(LSTM)模型对时间序列数据进行分类。通过适当的数据准备、模型构建和训练,可以实现在给定时间序列上对其所属类别进行准确的预测。
评论 33
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值