tf.nn.static_rnn 和 tf.contrib.rnn.static_rnn讲解

tf.nn.static_rnn 和 tf.contrib.rnn.static_rnn 是一样的,都表示同一个

这里讲解一下 tf.nn.static_rnn

tf.nn.static_rnn

tf.nn.static_rnn(
    cell,
    inputs,
    initial_state=None,
    dtype=None,
    sequence_length=None,
    scope=None
)
'''
Args:
		cell: An instance of RNNCell.
		inputs: A length T list of inputs, each a Tensor of shape [batch_size, input_size], or a nested tuple of such elements.
		initial_state: (optional) An initial state for the RNN. If cell.state_size is an integer, this must be a Tensor of appropriate type and shape [batch_size, cell.state_size]. If cell.state_size is a tuple, this should be a tuple of tensors having shapes [batch_size, s] for s in cell.state_size.
		dtype: (optional) The data type for the initial state and expected output. Required if initial_state is not provided or RNN state has a heterogeneous dtype.
		sequence_length: Specifies the length of each sequence in inputs. An int32 or int64 vector (tensor) size [batch_size], values in [0, T).
		scope: VariableScope for the created subgraph; defaults to "rnn".
Returns:
		A pair (outputs, state) where:
		outputs is a length T list of outputs (one for each input), or a nested tuple of such elements.
		state is the final state
'''
参数说明

创建一个RNN 通过指定的RNNCell :就是参数cell
cell:一个RNNCell实例
inputs: 长度为T的输入list,每个都是形状的张量[batch_size,input_size]
== initial_state:== (可选)RNN的初始状态。如果cell.state_size是一个整数,那么它必须是一个具有适当类型和形状的张量[batch_size,cell.state_size](这里也就是state_tuple=False)。 如果cell.state_size是一个元组,那么它应该是一个张量元组,元组的每个元素的形状为[batch_size,s] (s in cell.state_size)(这里也就是
state_tuple=True

sequence_length: 指定输入中每个序列的长度(一旦提供,将动态编码dynamic_rnn)。int32或int64类型的向量(张量)大小[batch_size],值在[0,T]之间。
返回:
(outputs, state)这样的一个元祖
outputs: 是输出长度T的列表(每个时间步输出一个)
state:最后时间步的RNN的state

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值