堆排序java

48 篇文章 0 订阅
46 篇文章 0 订阅
本文详细介绍了堆排序的原理与实现,包括如何构建大根堆、调整堆结构以及实现排序过程。此外,还探讨了在几乎有序数组排序和实时获取数据流中位数场景下,如何利用优先级队列(堆结构)来优化解决方案。通过实例展示了如何使用Java实现这两个问题的解决方法。
摘要由CSDN通过智能技术生成

1.堆结构就是用数组实现的完全二叉树结构
2.完全二叉树中如果每棵子树的最大值都在顶部就是大根堆
3.完全二叉树中如果每棵子树的最小值都在顶部就是小根堆
4.堆结构的heapInsert和heapify操作
5.堆结构的增大和减少
6.优先级队列结构,就是堆结构

堆排序

先让整个数组都变成大根堆结构
把堆的最大值和堆末尾的值交换,然后减少堆的大小以后,再去调整堆,一直周而复始,时间复杂度O(N*logN)
堆的大小减小成0之后,排序完成

父节点与子节点的关系:左叶子节点:2*N+1,右叶子节点:2*N+2
子节点与父节点的关系:父节点 (N-1)/2

private void heapSort(int[] arr){
	if (null == arr || arr.length < 2){
        return;
    }
    for (int i = 0; i < arr.length; i++) {
        heapInsert(arr,i);
    }
    int size = arr.length;
    swap(arr, 0, --size);
    while (size != 0){
        heapify(arr, 0, size);
        swap(arr, 0, --size);
    }
}
//从下往上,调成大根堆
private void heapInsert(int[] arr, int index){
	while(arr[index] > arr[(index-1)/2]){
        swap(arr,index,(index-1)/2);
        index = (index-1)/2;
    }
}

//重新调整堆结构
private void heapify(int[] arr, int index, int size){
	int left = 2 * index + 1;
    while (left < size){
         int largest = (left+1 < size) && arr[left]<arr[left+1] ? left+1 : left;
         largest = arr[index] > arr[largest] ? index : largest;
         //如果最大值是父节点处,那么就停止循环,因为接下来的结构都是之前调整好的
         if (largest == index){
             break;
         }
         swap(arr,largest,index);
         index = largest;
         left = 2 * index + 1;
     }
}

private void swap(int[] arr, int i, int j){
	int temp = arr[i];
	arr[i] = arr[j];
	arr[j] = temp;
}

堆排序扩展

1.【题目】
已知一个几乎有序的数组,几乎有序是指,如果把数组排好顺序的话,
每个元素移动的距离可以不超过K,并且k相对于数组来说比较小,
请选择一个合适的算法进行排序
【思路】优先级队列是用堆实现的,可以直接利用优先级队列,把优先级队列直接当做堆排序就好

private void sortedArrDistanceLessK(int[] arr, int k){
	PriorityQueue<Integer> heap = new PriorityQueue<>();
    int index = 0;
    for (; index < Math.min(k, arr.length); index++) {
        heap.add(arr[index]);
    }
    int i = 0;
    for (; index < arr.length; i++, index++) {
        arr[i] = heap.poll();
        heap.add(arr[index]);
    }

    while (!heap.isEmpty()){
        arr[i++] = heap.poll();
    }
}

2.【题目】
在一个数据流中,随时获取中位数
【思路】准备一个大根堆和一个小根堆,第一个数字放入大根堆,以后每个数字判断是否小于大根堆的堆顶元素,小于,放大根堆,大于,放小根堆,同时比较两个根堆的元素个数差,不能超过1,超过1,元素多的取堆顶元素进元素少的堆。全部元素入堆后,根据总元素个数,得出中位数。

public class MadianQuick {

    public static class MedianHolder {
        private PriorityQueue<Integer> minHeapQueue = new PriorityQueue<>(new MinHeapComparator());
        private PriorityQueue<Integer> maxHeapQueue = new PriorityQueue<>(new MaxHeapComparator());

        public void addNum(int num){
            if (maxHeapQueue.isEmpty() || num < maxHeapQueue.peek()){
                maxHeapQueue.add(num);
            } else {
                minHeapQueue.add(num);
            }
            modifyTwoHeapsSize();
        }

        private void modifyTwoHeapsSize() {
            if(minHeapQueue.size() == maxHeapQueue.size() + 2){
                maxHeapQueue.add(minHeapQueue.poll());
            }
            if (maxHeapQueue.size() == minHeapQueue.size() + 2){
                minHeapQueue.add(maxHeapQueue.poll());
            }
        }

        private Integer getMedian(){
            if (maxHeapQueue.size() + minHeapQueue.size() == 0){
                return null;
            }
            Integer maxHeapHead = maxHeapQueue.peek();
            Integer minHeadHead = minHeapQueue.peek();
            if (maxHeapQueue.size() == minHeapQueue.size()){
                return (maxHeapHead + minHeadHead) / 2;
            }
            return maxHeapQueue.size() > minHeapQueue.size() ? maxHeapHead : minHeadHead;
        }

    }

    public static class MinHeapComparator implements Comparator<Integer> {

        @Override
        public int compare(Integer o1, Integer o2) {
            return o1-o2 > 0 ? 1 : -1;
        }
    }

    public static class MaxHeapComparator implements Comparator<Integer> {

        @Override
        public int compare(Integer o1, Integer o2) {
            return o2-o1 > 0 ? 1 : -1;
        }
    }

    public static int getMedianOfArray(int[] arr){
        int[] copy = Arrays.copyOf(arr, arr.length);
        Arrays.sort(copy);
        int mid = (copy.length-1)/2;
        if ((copy.length & 1) == 0){
            return (copy[mid]+copy[mid+1])/2;
        } else {
            return copy[mid];
        }

    }

    public static void main(String[] args) {
        MedianHolder medianHolder = new MedianHolder();
        int[] arr = {5,3,2,7,9,8,6,4,3,1,7};
        for (int i : arr) {
            medianHolder.addNum(i);
        }
        int medianOfArray = getMedianOfArray(arr);

        Integer median = medianHolder.getMedian();
        System.out.println(median);
        System.out.println(medianOfArray);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值