Q-learning原理及代码实现

目录

1. Q-learning原理        

  1.1 Q值

  1.2  更新规则

  1.3  目标

  1.4  探索与利用

2.代码实现

  2.1 代码示例

  2.2 解释


1. Q-learning原理        

        Q-learning是一种基于值强化学习算法,用于在不依赖环境模型的情况下学习最优策略。它的目标是通过学习动作-状态对的价值(即Q值),找到使得累计奖励最大的策略。以下是Q-learning的关键步骤和公式:

  1.1 Q值

        Q值(动作价值)是一个函数,表示在某一状态下选择某一动作后,能够获得的未来累计奖励。Q值表示为 Q(s, a),其中 s 是当前状态,a 是当前动作。

  1.2  更新规则

        Q-learning 的核心是 Q 值的更新公式。在每一步,Q-learning 会通过与环境交互,更新对应的 Q 值:

Q(s, a) \leftarrow Q(s, a) + \alpha \left[ r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right]

其中:

  • Q(s, a) 是当前 Q 值
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值