机器学习
张筱竼
吾生也有涯,而知也无涯
展开
-
小样本学习综述
论文地址:https://arxiv.org/pdf/1904.05046.pdf GitHub 地址:https://github.com/tata1661/FewShotPapers 基于各个方法利用先验知识处理核心问题的方式,该研究将 FSL 方法分为三大类: 数据:利用先验知识增强监督信号; 模型:利用先验知识缩小假设空间的大小; 算法:利用先验知识更改给定假设空间中对最优假设的搜索。 ...翻译 2020-05-10 16:27:08 · 648 阅读 · 0 评论 -
计算机视觉中的注意力机制
https://cloud.tencent.com/developer/news/247227原创 2020-03-12 11:34:21 · 281 阅读 · 0 评论 -
Bagging 和 Boosting理解、区别与联系
Bagging 和 Boosting都属于集成学习(ensemble learning)方法,即通过构建并结合多个学习器来完成学习任务。例如对于分类问题,我们可以学习多个弱分类器,然后根据一定的规则对各个弱分类器的结果进行整合,得到最终的分类结果。1. Bagging Bagging是指采用Bootstrap(有放回的均匀抽样)的方式从训练数据中抽取部分数据训练多个分类器,每个分类器...原创 2019-01-11 10:42:59 · 4946 阅读 · 0 评论 -
机器学习面试题总结
链接:https://www.jianshu.com/p/d289755e89bb一 面试题概述面试的时候,面试官会结合你的回答和你的简历来询问你,所以在写简历的时候,简历上所写的所有内容在写的时候必须自己反问一下自己,这个知识点懂不懂。面试其实是一个沟通技巧的考量,在面试的时候要“灵活”;在有一些问题上,如果不会,那么直接说不会就可以;但是在一些比较关键的问题上,如果这个算法不会...转载 2019-03-15 16:04:48 · 961 阅读 · 0 评论 -
sklearn 中的 GBDT 回归
sklearn的gbdt回归GradientBoostingRegressor类构造方法def __init__(self, loss='ls', learning_rate=0.1, n_estimators=100, subsample=1.0, criterion='friedman_mse', min_samples_split=2, ...原创 2019-09-04 16:20:46 · 4959 阅读 · 0 评论