医学影像处理
张筱竼
吾生也有涯,而知也无涯
展开
-
乳腺癌组织病理图像分类
原文地址:https://ieeexplore.ieee.org/abstract/document/8122889/citations#citations1.数据集介绍Breakhis数据库包含良性和恶性乳腺肿瘤的显微活检图像。通过2014年1月至2014年12月的临床研究收集图像。在这段时间内,临床症状为BC所有患者都被邀请到巴西P&D实验室参与研究。机构审查委员会批准了...原创 2020-04-27 23:13:39 · 5560 阅读 · 4 评论 -
SimpleITK 医学图像归一化
import SimpleITK as sitk#将图像的灰度值归一化到0-255image = sitk.ReadImage('./***.nii.gz')resacleFilter = sitk.RescaleIntensityImageFilter()resacleFilter.SetOutputMaximum(255)resacleFilter.SetOutputMinimu...原创 2019-12-13 11:28:37 · 3761 阅读 · 3 评论 -
将numpy array保存为nii格式的图像
import nibabel as nib import numpy as np new_image = nib.Nifti1Image(my_arr, np.eye(4)) new_image.set_data_dtype(np.my_dtype) nib.save(new_image, 'my_arr.nii.gz')原创 2019-10-28 15:36:05 · 5742 阅读 · 5 评论 -
类别不均衡图像分割中loss的选择
最近在做医学图像分割,对于小器官或者病灶的分割问题,类别不平衡是一个需要解决的难题。今天看到了一篇介绍类别不均衡图像分割中loss的文章,感觉不错,分享给大家。https://blog.csdn.net/m0_37477175/article/details/83004746...原创 2019-03-15 13:28:09 · 3244 阅读 · 0 评论 -
使用SimpleITK对dicom格式医学图像做插值
链接:https://blog.csdn.net/qq_36339966/article/details/86726817原创 2019-03-23 09:29:07 · 2198 阅读 · 0 评论 -
SimpleITK手册
SimpleITK是美国国家医学图书馆Insight Segmentation and Registration Toolkit (ITK)的一个简化的开源接口,这是一个c++开源图像分析工具包,在学术界和工业界得到了广泛的应用。SimpleITK支持8种编程语言,包括c++、Python、R、Java、c#、Lua、Ruby和TCL。SimpleITK的二进制发行版目前可用于所有三种主要操作系统...原创 2019-03-23 10:07:40 · 9077 阅读 · 1 评论 -
pydicom手册
https://pydicom.github.io/pydicom/stable/pydicom_user_guide.html原创 2019-04-10 15:39:59 · 827 阅读 · 0 评论 -
slice thickness 和 slice increment
Slice thickness和slice increment 是CT/MRI成像的核心概念。Slice thickness是指扫描的(通常是轴向)分辨率(图中为2毫米)。Slice increment是指扫描下一个切片的表格/扫描仪的移动(图中从1毫米到4毫米不等)。这些值重叠是可以接受的,也是常见的。Slice thickness是理解图像分辨率的一个重要因素。如果扫描的slice inc...原创 2019-04-09 09:49:00 · 3764 阅读 · 2 评论 -
医学图像分析面临的挑战和未来方向
目前面临的主要挑战有:缺少精确的标注数据。医学领域对标注的要求更高。 样本不平衡。正负样本往往数量差异较大。 预测结果置信度信息缺失。医学领域对模型可解释性的要求更高最近在做医学图像分割的工作,对这几点有一些体会,标注数据的质量对分割结果有很大的影响,Garbage in, garbage out 用在此处也很合适。未来方向:处理小数据问题。一些有用的技术包括使用迁移学习、数据增...原创 2019-05-15 20:54:49 · 3466 阅读 · 0 评论 -
使用SimpleITK读取和保存NIfTI文件
## using simpleITK to load and save data.import SimpleITK as sitkitk_img = sitk.ReadImage('./***.nii.gz')img = sitk.GetArrayFromImage(itk_img)print("img shape:",img.shape)## save out = sitk.Ge...原创 2019-03-07 12:09:57 · 3128 阅读 · 3 评论 -
MRI图像偏置场矫正(bias field correction)
MR scans often display intensity non-uniformities due to variations in the magnetic field. So, one part of an image might appear lighter or darker when visualized, solely because of variations in the ...原创 2019-03-04 11:25:32 · 11951 阅读 · 5 评论 -
常见医疗扫描图像处理步骤
一 数据格式1.1 dicomDICOM是医学图像中标准文件,这些文件包含了诸多的元数据信息(比如像素尺寸,每个维度的一像素代表真实世界里的长度)。此处以kaggle Data Science Bowl数据集为例。data-science-bowl-2017。数据列表如下:后缀为.dcm。每个病人的一次扫描CT(scan)可能有几十到一百多个dcm数据文件(slices...转载 2019-03-06 12:29:50 · 1694 阅读 · 0 评论 -
U-Net核心思想
2015年提出的用于生物图像分割的网络,并在当时取得了冠军核心思想:1.网络由一个收缩子网络核一个扩张子网络构成;收缩主要用来捕捉上下文特征,扩张用来进行定位;2.收缩网络由卷积层、relu、2*2max polling构成,扩张网络主要由转置卷积来完成;3.收缩网络特征层分辨率高,用来定位;扩张网络特征层分辨率低,用来分类;4.收缩网络和扩张网络之间存在快捷连接,将底底层特征...原创 2018-09-13 19:22:27 · 792 阅读 · 0 评论 -
医学影像数据集
转自:https://blog.csdn.net/sinat_37842336/article/details/805829481、肺结节数据库LIDC-IDRI:CSDN数据库介绍:http://blog.csdn.net/dcxhun3/article/details/54289598数据库网址:https://wiki.cancerimagingarchive.net/displ...转载 2018-10-16 14:27:36 · 5880 阅读 · 1 评论 -
exception occurred during itk-snap startup
今天使用ITK-snap时,跳出一个小窗体显示打开错误。刚开始以为是安装时出了问题,结果重复安装之后还是显示同样的错误。于是通过各种尝试,发现一个很简单有效的解决方法。解决方法如下:(1) 找到提示出现错误的文件:C:\Users\***\AppData\Roaming\itksnap.org\ITK-SNAP\UserPreferences.xml;(2) 直接把UserPrefer...原创 2018-10-22 17:33:05 · 7366 阅读 · 13 评论 -
Matlab读取Dicom格式医学图像
I=dicomread('I:/CT_image/***.IMA'); %读取图像metadata = dicominfo(I); %显示图像的存储信息imagesc(I); %显示出的是彩色图像imshow(I, []); %显示灰度图像,注意一定要加 [] 注:imshow(I,[]) 显示灰度图像 I,根据 I 中的像素值范围对显示进行转换。ims...原创 2018-12-17 18:09:24 · 7889 阅读 · 27 评论 -
pydicom 读取并显示dicom图像
import pydicomfrom matplotlib import pyplot as pltfilename = "000.dcm"ds = pydicom.dcmread(filename)data = ds.pixel_arrayplt.imshow(data, cmap='gray')plt.show()注:若“000.dcm”为三维数据,则data的维度为(dep...原创 2019-01-25 11:14:31 · 8400 阅读 · 21 评论 -
python读写.nii格式图像
import nibabel as nibimg1 = nib.load('my_file.nii')img2 = nib.load('other_file.nii.gz')img3 = nib.load('spm_file.img')data = img1.get_data()affine = img1.affineprint(img1)nib.save(img1, 'm...原创 2019-03-01 17:22:31 · 9886 阅读 · 0 评论 -
python nii图像扩充
import osimport nibabel as nibimport numpy as npimport math src_us_folder = 'F:/src/ori'src_seg_folder = 'G:/src/seg' aug_us_folder = 'G:/aug/ori'aug_seg_folder = 'G:/aug/seg' img_n= 10...原创 2019-03-01 17:27:36 · 1720 阅读 · 0 评论 -
nii格式图像存为npy格式
import nibabel as nibimport osimport numpy as npimg_path = '/home/lei/train/img/'seg_path = '/home/lei/train/seg/'saveimg_path = '/home/lei/train/npy_img/'saveseg_path = '/home/lei/train/npy_s...原创 2019-03-01 17:30:30 · 5056 阅读 · 0 评论 -
深度学习如何在医学影像分割上大显神通?——分割网络的三个改进思路
今天看到了一篇介绍深度学习在医学影像分割中的应用的文章,写的很好,分享给更多需要的朋友。原文链接:https://cloud.tencent.com/developer/article/1029037一、医学影像分割有助于临床工作图像分割在影像学诊断中大有用处。自动分割能帮助医生确认病变肿瘤的大小,定量评价治疗前后的效果。除此之外,脏器和病灶的识别和甄别也是一项影像科医生的日常工作。CT和...转载 2018-09-14 13:03:13 · 19124 阅读 · 2 评论