试题编号: | 201609-3 |
试题名称: | 炉石传说 |
时间限制: | 1.0s |
内存限制: | 256.0MB |
问题描述: |
问题描述
《炉石传说:魔兽英雄传》(Hearthstone: Heroes of Warcraft,简称炉石传说)是暴雪娱乐开发的一款集换式卡牌游戏(如下图所示)。游戏在一个战斗棋盘上进行,由两名玩家轮流进行操作,本题所使用的炉石传说游戏的简化规则如下:
* 玩家会控制一些角色,每个角色有自己的生命值和攻击力。当生命值小于等于 0 时,该角色死亡。角色分为英雄和随从。 * 玩家各控制一个英雄,游戏开始时,英雄的生命值为 30,攻击力为 0。当英雄死亡时,游戏结束,英雄未死亡的一方获胜。 * 玩家可在游戏过程中召唤随从。棋盘上每方都有 7 个可用于放置随从的空位,从左到右一字排开,被称为战场。当随从死亡时,它将被从战场上移除。 * 游戏开始后,两位玩家轮流进行操作,每个玩家的连续一组操作称为一个回合。 * 每个回合中,当前玩家可进行零个或者多个以下操作: 1) 召唤随从:玩家召唤一个随从进入战场,随从具有指定的生命值和攻击力。 2) 随从攻击:玩家控制自己的某个随从攻击对手的英雄或者某个随从。 3) 结束回合:玩家声明自己的当前回合结束,游戏将进入对手的回合。该操作一定是一个回合的最后一个操作。 * 当随从攻击时,攻击方和被攻击方会同时对彼此造成等同于自己攻击力的伤害。受到伤害的角色的生命值将会减少,数值等同于受到的伤害。例如,随从 X 的生命值为 HX、攻击力为 AX,随从 Y 的生命值为 HY、攻击力为 AY,如果随从 X 攻击随从 Y,则攻击发生后随从 X 的生命值变为 HX - AY,随从 Y 的生命值变为 HY - AX。攻击发生后,角色的生命值可以为负数。 本题将给出一个游戏的过程,要求编写程序模拟该游戏过程并输出最后的局面。
输入格式
输入第一行是一个整数 n,表示操作的个数。接下来 n 行,每行描述一个操作,格式如下:
<action> <arg1> <arg2> ... 其中<action>表示操作类型,是一个字符串,共有 3 种:summon表示召唤随从,attack表示随从攻击,end表示结束回合。这 3 种操作的具体格式如下: * summon <position> <attack> <health>:当前玩家在位置<position>召唤一个生命值为<health>、攻击力为<attack>的随从。其中<position>是一个 1 到 7 的整数,表示召唤的随从出现在战场上的位置,原来该位置及右边的随从都将顺次向右移动一位。 * attack <attacker> <defender>:当前玩家的角色<attacker>攻击对方的角色 <defender>。<attacker>是 1 到 7 的整数,表示发起攻击的本方随从编号,<defender>是 0 到 7 的整数,表示被攻击的对方角色,0 表示攻击对方英雄,1 到 7 表示攻击对方随从的编号。 * end:当前玩家结束本回合。 注意:随从的编号会随着游戏的进程发生变化,当召唤一个随从时,玩家指定召唤该随从放入战场的位置,此时,原来该位置及右边的所有随从编号都会增加 1。而当一个随从死亡时,它右边的所有随从编号都会减少 1。任意时刻,战场上的随从总是从1开始连续编号。
输出格式
输出共 5 行。
第 1 行包含一个整数,表示这 n 次操作后(以下称为 T 时刻)游戏的胜负结果,1 表示先手玩家获胜,-1 表示后手玩家获胜,0 表示游戏尚未结束,还没有人获胜。 第 2 行包含一个整数,表示 T 时刻先手玩家的英雄的生命值。 第 3 行包含若干个整数,第一个整数 p 表示 T 时刻先手玩家在战场上存活的随从个数,之后 p 个整数,分别表示这些随从在 T 时刻的生命值(按照从左往右的顺序)。 第 4 行和第 5 行与第 2 行和第 3 行类似,只是将玩家从先手玩家换为后手玩家。
样例输入
8
summon 1 3 6 summon 2 4 2 end summon 1 4 5 summon 1 2 1 attack 1 2 end attack 1 1
样例输出
0
30 1 2 30 1 2
样例说明
按照样例输入从第 2 行开始逐行的解释如下:
1. 先手玩家在位置 1 召唤一个生命值为 6、攻击力为 3 的随从 A,是本方战场上唯一的随从。 2. 先手玩家在位置 2 召唤一个生命值为 2、攻击力为 4 的随从 B,出现在随从 A 的右边。 3. 先手玩家回合结束。 4. 后手玩家在位置 1 召唤一个生命值为 5、攻击力为 4 的随从 C,是本方战场上唯一的随从。 5. 后手玩家在位置 1 召唤一个生命值为 1、攻击力为 2 的随从 D,出现在随从 C 的左边。 6. 随从 D 攻击随从 B,双方均死亡。 7. 后手玩家回合结束。 8. 随从 A 攻击随从 C,双方的生命值都降低至 2。
评测用例规模与约定
* 操作的个数0 ≤ n ≤ 1000。 * 随从的初始生命值为 1 到 100 的整数,攻击力为 0 到 100 的整数。 * 保证所有操作均合法,包括但不限于: 1) 召唤随从的位置一定是合法的,即如果当前本方战场上有 m 个随从,则召唤随从的位置一定在 1 到 m + 1 之间,其中 1 表示战场最左边的位置,m + 1 表示战场最右边的位置。 2) 当本方战场有 7 个随从时,不会再召唤新的随从。 3) 发起攻击和被攻击的角色一定存在,发起攻击的角色攻击力大于 0。 4) 一方英雄如果死亡,就不再会有后续操作。 * 数据约定: 前 20% 的评测用例召唤随从的位置都是战场的最右边。 前 40% 的评测用例没有 attack 操作。 前 60% 的评测用例不会出现随从死亡的情况。 |
#include<iostream>
#include<string>
#include<vector>
using namespace std;
typedef struct summon
{
int attack;
int health;
}Som;
int main()
{
int a = 30, b = 30;
vector<Som> A, B;
string order;
Som som;
int x, y;
Som X, Y;
int local;
bool key = true;
int n, i;
cin >> n;
for (i = 0; i < n; i++)
{
cin >> order;
if (order == "summon")
{
cin >> local >> som.attack >> som.health;
if (key)
{
A.insert(A.begin() + local - 1, som);
}
else
{
B.insert(B.begin() + local - 1, som);
}
}
else if (order == "attack")
{
cin >> x >> y;
if (key)
{
if (y == 0)
{
b -= A[x - 1].attack;
if (b <= 0)
break;
else
continue;
}
X = A[x - 1];
Y = B[y - 1];
if (X.attack >= Y.health)
B.erase(B.begin() + y - 1);
else
B[y - 1].health -= X.attack;
if (Y.attack >= X.health)
A.erase(A.begin() + x - 1);
else
A[x - 1].health -= Y.attack;
}
else
{
if (y == 0)
{
a -= B[x - 1].attack;
if (a <= 0)
break;
else
continue;
}
X = B[x - 1];
Y = A[y - 1];
if (X.attack >= Y.health)
A.erase(A.begin() + y - 1);
else
A[y - 1].health -= X.attack;
if (Y.attack >= X.health)
B.erase(B.begin() + x - 1);
else
B[y - 1].health -=Y.attack;
}
}
else
key = !key;
}
if (a <= 0)
cout << -1 << endl;
else if (b <= 0)
cout << 1 << endl;
else
cout << 0 << endl;
cout << a << endl;
cout << A.size()<<" ";
for (i = 0; i < A.size(); i++)
{
cout << A[i].health << " ";
}
cout << endl;
cout << b << endl;
cout << B.size() << " ";
for (i = 0; i < B.size(); i++)
{
cout << B[i].health << " ";
}
}