假定输入样本为S = X1,X2,···,Xm,则算法步骤为:
1. 选择初始的k个类别中心μ1μ2…μk
2. 对于每个样本Xi,将其标记为距离类别中心最近的类别(距离计算一般采用欧式距离)
3. 将每个类别中心更新为隶属该类别的所有样本的均值
4. 重复最后两步,直到类别中心的变化小于某阈值。
假定输入样本为S = X1,X2,···,Xm,则算法步骤为:
1. 选择初始的k个类别中心μ1μ2…μk
2. 对于每个样本Xi,将其标记为距离类别中心最近的类别(距离计算一般采用欧式距离)
3. 将每个类别中心更新为隶属该类别的所有样本的均值
4. 重复最后两步,直到类别中心的变化小于某阈值。