论文阅读:求解约束多目标区间优化的交互多属性决策NSGA-II算法

文章介绍了一种结合多属性决策与改进NSGA-II算法的方法,用于解决约束多目标区间优化问题。通过线性化处理、Pareto排序和区间拥挤距离,以及考虑决策者偏好的满意解选择,该算法在仿真实验中展示了有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

求解约束多目标区间优化的交互多属性决策NSGA-II算法

作者:陈志旺,陈林,白锌,杨七,赵方亮
期刊:控制与决策、2015.05
DOI:10.13195/j.kzyjc.2014.0455

内容简介

针对约束多目标区间优化问题,提出一种交互多属性决策NSGA-II算法.该算法将非线性问题线性化,定义P占优支配关系求出个体的序值,定义区间拥挤距离来区分具有相同序值个体的优劣,采用约束精英策略删除种群中不满足约束的个体.将选出的个体作为方案集,目标函数作为属性集,决策者对于各目标函数的偏好作为属性权重,构建一个多属性决策模型,在进化过程中融入该模型来选取符合决策者偏好的满意解.仿真实验验证了所提出方法的可行性和正确性.

内容摘录

  • 本文将多属性决策与改进NSGA-II进行交互,即在该算法中引入间隔代数 I I I(间隔代数小于遗传代数),在进化过程中,设置种群每进化 I I I代就进行一次多属性决策,并存储当代种群中的满意解。若算法连续3次(进化3 I I I代)所得的满意解均为同一解,则终止算法;否则,对所有满意解进行排序,并选择其中的最小值个体作为满意解。
  • 多属性决策:
    • Pareto最优解集中符合决策者偏好的解称为满意解。
    • N N N个决策方案的集合: A = { A 1 , A 2 , ⋯   , A N } A=\{A_1,A_2,\cdots,A_N\} A={ A1,A2,,
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值