论文阅读
文章平均质量分 88
还是要努力呀!
编程小白
展开
-
论文阅读:Interactive evolutionary multiobjective optimization driven by robust ordinal regression
该文献提出了一种基于必要偏好增强的进化多目标优化器(NEMO),在优化过程中,要求决策者每隔k代通过比较一对随机选择的解决方案来引入用户的偏好信息,然后使用考虑了与偏好信息相符的所有实例的稳健顺序回归方法对解决方案进行排序,最终根据排序结果返回所有的偏好解。原创 2024-02-20 17:45:59 · 490 阅读 · 0 评论 -
论文阅读:Brain–Computer EMO: A Genetic Algorithm Adapting to the Decision Maker
在进化多目标优化算法执行一定时间后得到的解决方案提交给决策者,决策者根据自己的偏好对解决方案进行排序,并将该排序以成对约束的形式反馈给SVM分类算法进行训练模拟决策者的效用函数,该效用函数将会指导EMOA的搜索优化。在整个优化过程中,决策者还被请求对解决方案进行反馈来更新效用函数,并将算法提供的排序结果与自己的偏好进行对比来选择是否需要进一步的训练。原创 2024-02-02 10:53:01 · 1319 阅读 · 1 评论 -
论文阅读:Assessing the Performance of Interactive Multiobjective Optimization Methods: A Survey
总结了 45 篇论文的发现,涵盖了 48 个数值实验。实验分为展示单一交互方法的实验、比较交互方法和后验方法的实验以及比较几种交互方法的实验。我们收集了有关所进行的实验类型和所涉及的性能标准、所涉及的 DM 类型和所考虑问题的性质等信息,并分析了调查结果。原创 2024-02-02 10:47:13 · 933 阅读 · 1 评论 -
论文阅读:An interactive method for surrogate-assisted multi-objective evolutionary algorithms
在Experiments部分首先介绍交互过程是DM通过Input box输入新参数,然后指出在演化过程1000迭代中进行5次交互来观察GD、IGD等指标,最后就开始总结实验结果来表明交互过程对结果产生有效指导。并没有具体介绍参数调整的依据。原创 2024-01-31 10:20:32 · 980 阅读 · 1 评论 -
论文阅读:A visualized human-computer interactive approach to job shop scheduling
这篇论文介绍了一种图形交互系统,允许决策者在与算法进行交互的时候观察当前结果的一些指标以及调度甘特图,Human可以调整某一道或某几道工序的位置,算法会根据Human的操作自动调整不合法的机器分配,并继续优化。原创 2024-01-31 10:17:33 · 1328 阅读 · 1 评论 -
论文阅读 :TradeoffBased Interactive MultiObjective Optimization Method Driven by Evolutionary Algorithms
多目标优化问题涉及两个或多个相互冲突的目标,它们不是单一的最优解,而是一组帕累托最优解。为了支持决策者寻找最优解,提出了一种基于决策者偏好的交互式多目标优化方法,偏好信息以无差异权衡的形式表示。该方法将进化算法与基于梯度的交互式步长折衷(GRIST)方法相结合。采用进化算法在每次迭代中产生近似的帕累托最优解。要求 dm 提供无差异权衡,其在Pareto前沿的tangent超平面上的投影提供了一个权衡方向。提出了一种逼近切超平面法向量的方法,用于计算投影。以水质管理问题为例,说明了交互式方法的交互过程。原创 2024-01-25 10:35:28 · 952 阅读 · 1 评论 -
论文阅读:求解约束多目标区间优化的交互多属性决策NSGA-II算法
针对约束多目标区间优化问题,提出一种交互多属性决策NSGA-II算法.该算法将非线性问题线性化,定义P占优支配关系求出个体的序值,定义区间拥挤距离来区分具有相同序值个体的优劣,采用约束精英策略删除种群中不满足约束的个体.将选出的个体作为方案集,目标函数作为属性集,决策者对于各目标函数的偏好作为属性权重,构建一个多属性决策模型,在进化过程中融入该模型来选取符合决策者偏好的满意解.仿真实验验证了所提出方法的可行性和正确性。原创 2024-01-25 10:29:01 · 1216 阅读 · 1 评论 -
论文阅读:Towards Automatic Testing of Reference Point Based Interactive Methods
本篇论文所提出的虚拟决策者Artificial Decision Maker替代人类DM向交互式算法提供参考点,但是参考点的生成方式并没有涉及到人类DM的经验,本文是通过预设的目标函数期望水平ADM aspirations point(asp)与当前Pareto解集中各目标函数值来确定的。原创 2024-01-24 11:26:06 · 1096 阅读 · 1 评论 -
论文阅读:Interactive Multiobjective Optimization from a Learning Perspective
对IMO中有关学习的方面进行了较为全面的分析,分析了决策者与算法之间的联系,比较偏理论化。原创 2024-01-23 20:25:22 · 452 阅读 · 0 评论 -
论文阅读:Interactive Multiobjective Optimization:A Review of the State-of-the-Art
论文Interactive Multiobjective Optimization:A Review of the State-of-the-Art的阅读整理,该文献对目前的 IMO 算法进行了分类介绍。原创 2022-03-22 16:32:58 · 685 阅读 · 0 评论 -
论文阅读:Interactive Multiobjective Optimisation: Preference Changes and Algorithm Responsiveness
Interactive Multiobjective Optimisation: Preference Changes and Algorithm Responsiveness作者:Kendall Taylor、Xiaodong Li期刊:GECCO '18: Proceedings of the Genetic and Evolutionary Computation ConferenceDOI:10.1145/3205455.3205624摘要对于具有多个目标和较大搜索空间的优化问题,找到原创 2022-01-17 11:35:52 · 708 阅读 · 0 评论 -
论文阅读:Global optimization with one-class classification-assisted selection
进化算法中的选择方式是从一组候选中选择有希望的解决方案。大多数选择策略都是适应度驱动的,每个解决方案都是根据其适应度值来选择的。这种基于适应度的策略导致了适应度评估的浪费,因为一些没有希望的解决方案被扔掉了,同时在评估中没有提供有价值的搜索信息。我们的目的是减少选择过程中适应度评估的次数。我们将选择过程视为单类分类过程,这样与具有目前最佳解的种群相似的后代解更有可能被选择。出于评估目的,只能选择那些预测的“有希望”的解决方案。基于这一考虑,我们提出了一种单类分类辅助选择策略OCAS。原创 2021-11-09 16:45:12 · 397 阅读 · 0 评论 -
论文阅读:Preference-based evolutionary algorithm for airport surface operations
随着越来越多的机场面临严重拥堵和环境管制,优化机场地面调度的研究已开始考虑将时间效率之外的燃油消耗和相关排放降至最低。目标函数与经济成本相结合,可以作为偏好信息来搜索成本效益高的区域以及Pareto最优解。针对跑道调度与机场地面运动相结合的综合优化问题,本文提出了一种带偏好信息的多目标进化优化框架。偏好信息被用来控制感兴趣区域的范围,能够使搜索算法获得更快的收敛速度和潜在的更好的解。在此基础上,本文还提出了一种筛选过程来选择Pareto最优解集中均匀分布的子集,以减小解集规模,帮助决策者进行选择。原创 2021-09-27 15:27:48 · 313 阅读 · 2 评论 -
论文阅读:Preference-based evolutionary algorithm for airport surface operations
该文章引入了一个EMO框架,并设计了新的拥挤距离,有效地控制了兴趣区间(RoI)的范围,直接影响算法的性能。该EMO的主要思想是,使用区间偏好信息来定义兴趣区间(RoI)的范围会比使用用户自定义参数的算法得到更好的解决方案。除此之外,该文章还提出了一种新的过滤方法来寻找具有代表性的均匀分布解子集,进一步提高了决策者选择具有成本效益的解的能力。原创 2021-09-07 21:10:08 · 265 阅读 · 1 评论