张量表示数据,
用计算图搭建神经网络,
用回话执行计算图,优化线上的权重(参数),得到模型
张量tensor:多维数组(列表),阶:张量的维数
1-D 向量 v = [1,2,3]
2-D 矩阵 m = [[1,2,3],[1,2,3],[4,5,6]]
n-D 张量 t = [[[n个…]]]
数据类型
tf.float32,tf.int32
常数
a = tf.constant([1.0,2.0])
计算图:搭建神经网络的计算过程,只搭建,不运算
乘法:
y = tf.matmul()
会话session :执行计算图中的节点运算
with tf.Session() as sess:
print(sess.run(y))
期间会出现相关warning,提示有加速功能没有使用
vim ~/ .bashrc
配置warning
添加:
export TF_CPP_MIN_LOG_LEVEL=2
执行:
source ~/ .bashrc
将不再提示warning
参数只神经元线上的权重W,用变量表示,随机给初值
w = tf.Variable(tf.random_normal([2,3],stddev=2,mean=0,seed=1))
tf.