tensorflow搭建NN 以及前向传播

本文详细介绍了如何使用TensorFlow搭建神经网络,包括张量的概念、计算图的构建、前向传播的实现以及权重初始化。通过实例展示了如何创建计算图、执行会话以及设置变量以进行神经网络的前向传播过程。
摘要由CSDN通过智能技术生成

张量表示数据,
用计算图搭建神经网络,
用回话执行计算图,优化线上的权重(参数),得到模型
张量tensor:多维数组(列表),阶:张量的维数
1-D 向量 v = [1,2,3]
2-D 矩阵 m = [[1,2,3],[1,2,3],[4,5,6]]
n-D 张量 t = [[[n个…]]]
数据类型
tf.float32,tf.int32
常数
a = tf.constant([1.0,2.0])
计算图:搭建神经网络的计算过程,只搭建,不运算
乘法:
y = tf.matmul()
会话session :执行计算图中的节点运算

with tf.Session() as sess:
	print(sess.run(y))

期间会出现相关warning,提示有加速功能没有使用
vim ~/ .bashrc
配置warning
添加:
export TF_CPP_MIN_LOG_LEVEL=2
执行:
source ~/ .bashrc

将不再提示warning

参数只神经元线上的权重W,用变量表示,随机给初值
w = tf.Variable(tf.random_normal([2,3],stddev=2,mean=0,seed=1))
tf.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值