1.向量加法。
平行四边形法则。
2.向量减法。
a-b=由b指向a的向量。
3.向量点乘。
代数定义:
设二维空间内有两个向量a=(x1,y1)和b=(x2,y2),定义它们的数量积(又叫内积、点积)为以下实数:a●b=x1x2 +y1y2。
可以推广至N维向量。
几何定义:
a●b=|a| |b| |cosθ|。
a与b的模长乘余弦值。
4.向量的叉乘。
a x b=a ^ b =|a| |b| |sinθ|.
a与b的模长乘正弦值。
(a,b,c)×(x,y,z)=(bz-cy,cx-az,ay-bx)
三维向量的叉乘运算。
向量积被定义为:
模长:(在这里θ表示两向量之间的夹角(共起点的前提下)(0° ≤ θ ≤ 180°),它位于这两个矢量所定义的平面上。)
方向:a向量与b向量的向量积的方向与这两个向量所在平面垂直,且遵守右手定则。(一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,当右手的四指从a以不超过180度的转角转向b时,竖起的大拇指指向是c的方向。c = a ∧ b)
叉积的定义:c =a x b 其中a,b,c均为向量。即两个向量的叉积得到的还是向量!
性质1:c⊥a,c⊥b,即向量c垂直与向量a,b所在的平面。
性质2:模长|c|=|a||b|sin<a,b>
性质3:满足右手法则。从这点我们有axb ≠ bxa,而axb = – bxa。所以我们可以使用叉积的正负值来判断向量a,b的相对位置,即向量b是处于向量a的顺时针方向还是逆时针方向。
由此编写opengl的法向量函数
摘抄于https://blog.csdn.net/july_unity/article/details/79265912
2019.12.4