【2024】WIN10 3060 CUDA11.6 安装tensorflow GPU 2.10.0详细教程

该文章已生成可运行项目,

成功配置的环境

  • python 3.10
  • cuda 11.6
  • cuDnn 8.9.7
  • tensorflow gpu 2.10.0

一、安装Anaconda

进入Anaconda下载,下载Anaconda并安装。

二、创建Anaconda虚拟环境

安装好Anaconda后,进入Anaconda Prompt,创建conda环境

conda create -n tensorflow python=3.10

三、安装cuda

查看本机cuda版本,安装cuda应小于本机cuda版本

打开cmd,输入nvidia-smi,查看CUDA Version

3.1 安装的CUDA ToolKit

进入CUDA Toolkit Archive | NVIDIA Developer,找到11.6.0版本


按下图选择相应的选项

3.2 安装CUDA ToolKit

一路直接安装,取消visual studio integration就行

 

win+r,打开cmd,输入nvcc -V,出现CUDA的版本信息,则说明安装成功


 

四、安装cuDNN

4.1 下载cuDNN需要账号,进入官网注册账号

进入cuDNN Archive | NVIDIA Developer


4.2 下载对应版本8.9.7




下载后,解压文件,将所有文件拖入到(cuda 安装目录)
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6

 

4.3 配置环境变量

我们打开环境变量,在系统变量的path路径下添加以下路径:(具体要根据自己的安装路径下做调整)

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6\bin
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6\libnvvp
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6\lib
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6\include

4.4 验证环境变量是否配置成功:


打开cmd,我们进入到以下路径:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6\extras\demo_suite

然后分别执行以下两个命令:.\bandwidthTest.exe 和.\deviceQuery.exe

出现pass就是成功


五、安装GPU版本的tensorflow

5.1 进入conda环境

conda activate tensorflow   

5.2 下载tensorflow

TensorFlow 2.10.0 的 GPU 版本与 CPU 版本是合并的,只要你的环境配置正确,它会自动检测 GPU 并利用。

pip install tensorflow==2.10.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

5.3 解决报错

进入python环境输入

import tensorflow as tf

出现报错TypeError: Unable to convert function return value to a Python type! The signature was

报错原因为numpy版本太高,重新下载numpy,解决报错

pip install numpy==1.23.5 -i https://pypi.tuna.tsinghua.edu.cn/simple



安装成功

该文章已生成可运行项目
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值