图神经网络之基础

图的定义

图在生活中无处不在,如社交网络,知识图谱,蛋白质结构等。对于图,我们习惯上用 G = ( V , E ) G=(V,E) G=(V,E)表示。这里 V V V是图中节点的集合,而 E E E为边的集合,这里记图的节点数为 N N N在这里插入图片描述
通常,一个图中有3个比较重要的矩阵:
邻接矩阵 A A A:用来表示节点间的连接关系,一般是0-1矩阵;
度矩阵 D D D:每个节点的度指的是其连接的节点数,这是一个对角矩阵;
特征矩阵 X X X:用于表示节点的特征。

有向图和无向图

区别在于节点之间存不存在指向关系,有指向关系的是有向图,反之则是无向图

指节点相连的边的数量。若是有向图,则分为出度(箭头指出的边数)和入度(箭头指入的边数)

连通图

在无向图中,若从顶点v1到顶点v2有路径,则称顶点v1与顶点v2是连通的。如果图中任意一 对顶点都是连通的,则称此图为连通图。

图的直径

是指连接任意两个节点的所有最短路径中最长路径的长度。(即,将任意两个节点的最短路径存在一个list当中,其中最大值是图的直径)

度中心性

在网络中,一个节点的度越大,就意味着这个节点的度中心性就越高,就说明在网络中这个节点越重要。度中心性等于当前节点的度数/总节点数-1 (很合理,度数越大说明越重要,减去的1是自身)

特征向量中心性

一个节点的重要性取决于其邻居节点的数量(即该节点的度),也取决与其邻居节点的重要性。与之相连的邻居节点越重要,则该节点就越重要。
在这里插入图片描述
用上述的图解释,首先对邻接矩阵 A A A做特征值分解,得到对应的特征值和特征向量。然后取最大的特征值对应的特征向量,取绝对值,即得到特征向量的中心性。因为图中1,5节点的度都为3,因此1和5的特征向量中心性最大,而2,3,4节点的度都是2,但是特征向量中心性不一样,2连接了1,3连接了5,但是4连接了1和5,特征向量中心性与该节点的邻居节点重要性相关,所以4的特征向量中心性比2和3的大。

import numpy as np
import pandas as pd
import networkx as nx

edges = pd.DataFrame()
edges['sources'] = [0,1,2,3,4,4,6,7,7,9,1,4,4,4,6,7,5,8,9,8]
edges['targets'] = [1,4,4,4,6,7,5,8,9,8,0,1,2,3,4,4,6,7,7,9]
#edges['weights'] = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
# source 为起点,target为终点, weight为度
G = nx.from_pandas_edgelist(edges, source='sources',target='targets')
# degree
print(nx.degree(G))
# 连通分量
print(list(nx.connected_components(G)))
# 图直径
print(nx.diameter(G))
# 度中心性
print('度中心性',nx.degree_centrality(G))
# 特征向量中心性
print('特征向量中心性',nx.eigenvector_centrality(G))

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值