在AutoDL平台训练yolov5模型教程

本文作者分享了如何在AutoDL平台上租用服务器进行深度学习模型yolov5的训练。通过注册、选择GPU实例、配置环境、上传代码、安装依赖和运行模型,详细阐述了整个流程,适合初学者参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

由于自己电脑显卡性能一般,买显卡又价格昂贵。之前一直在某宝找人代训练,将训练好的exp放到本地代码中,这种方法虽然好使,但是收费都不低,训练三百张图片,店家至少也要收费100块。因此,我在网上看能否租用服务器进行训练,百度后找到了一些类似的平台。目前仅尝试过AutoDL,下面是我的一些详细运行部署过程,供初学者进行学习:

1、登录注册平台
2、点击右上角控制台在这里插入图片描述
3、点击左侧“容器实例”,接着点击中间的“租用新实例”
在这里插入图片描述
4、跳转到如下界面,这里展现的是不同配置的服务器,以及租用的计费方式,因为我只使用过按量计费的方式,所以下面演示我将使用如下方式。按量计费一般是按照小时计费,根据配置不同价格也不相同,配置高的显卡设备收费逐渐变高,一般根据自己的需求来进行租用。以GPU型号RTX 3090为例,这里我们租用这个显卡。
在这里插入图片描述
在这里插入图片描述
5、下拉到底部,可以配置相关相关的训练环境,因为我要训练yolov5模型,下图的训练框架和其他配置版本都符合我的需求,然后点击右下角的立即创建。
在这里插入图片描述
6、实例创建成功后,显示如下画面。到此实例创建完成,正式开始计费了。点击右侧jupyterLab。
在这里插入图片描述
7、进入后显示的是如下界面。下面将要上传自己本地的yolov5程序到下图左侧目录中。具体实现为,将自己本地代码打包生成.zip为后缀名的压缩文件。通过直接拖拽压缩包到左侧空白区域,或者点击上传图标进行上传。
在这里插入图片描述
8、上传成功后左侧目录为下图所示。通过ls命令,我们查看根目录下的文件。通过pwd我们可以看到是在根目录下的。
在这里插入图片描述
9、接下来我们解压上传的压缩包到当前目录中。
解压指令:

unzip yolov5-master.zip

解压后的看到路径下已经有了该压缩包文件,通过左侧目录或者指令都可以查看解压后的文件目录。这里需要注意一下,如果本地文件的路径没有修改,需要提前进行修改。可以通过点击左侧的目录,具体修改设置路径的文件。在AutoDL中,根目录为/root/,不清楚的小伙伴可以动手自己查看一下。因此,如果写成绝对路径的样式,需要从/root/开始写。
在这里插入图片描述
到此,我们的程序就上传成功了。
10、下面我们需要创建环境,安装程序所依赖的一些包。进入解压后的yolov5文件目录,执行如下指令:

conda activate

弹出如下内容:
在这里插入图片描述
然后输入conda init,关闭该终端重新打开。打开后如下图所示:
在这里插入图片描述
11、cd指令进入文件夹目录,安装程序所依赖的包。指令如下:

pip install -r requirements.txt

安装成功后的截图。
在这里插入图片描述
11、下面我们将测试一下,环境配置是否正确。(其他路径可训练集、测试集、验证集的划分这里不做展示,看另一篇文档),通过指令执行detect.py文件。因为我之前已经训练好模型了,所以我这样直接测试一下比较方便。

python detect.py

程序运行成功,能够对物体进行目标检测。
在这里插入图片描述
在这里插入图片描述
12、若果需要在线训练模型,将训练集、测试集、验证集都划分好后(划分可以看我发的另外一篇博客关于yolov5环境配置的https://blog.csdn.net/qq_33163464/article/details/130801083?spm=1001.2014.3001.5502),执行如下指令进行训练:

python train.py

到此,通过租用服务器训练yolov5目标检测算法就全部实现了。

### 使用 AutoDL 进行 YOLO 模型训练 #### 配置文件设置 在使用 AutoDL 训练 YOLO 模型时,配置文件是核心部分之一。它定义了模型架构、优化器参数、学习率调度以及其他超参数。以下是典型的配置文件结构: ```yaml model: type: yolov5 backbone: cspdarknet53 training: batch_size: 16 epochs: 100 optimizer: name: AdamW learning_rate: 0.001 scheduler: name: CosineAnnealingLR T_max: 90 data: train_path: ./datasets/train/ val_path: ./datasets/val/ classes: ['person', 'car', 'bike'] ``` 上述配置文件指定了使用的模型类型为 `yolov5` 和骨干网络为 `cspdarknet53`[^1]。同时设置了批量大小、训练轮数以及优化器的相关参数。 #### 数据集准备 为了成功训练 YOLO 模型,数据集的准备工作至关重要。YOLO 的输入通常是图像及其对应的标签文件(一般为 `.txt` 文件)。每张图片对应一个标签文件,其中每一行表示一个边界框的位置和类别索引。 - **数据格式**: 图像路径应与配置文件中的 `train_path` 和 `val_path` 对应。对于每个对象,其标注需遵循如下格式: ``` <class_id> <x_center> <y_center> <width> <height> ``` 其中 `<x_center>` 和 `<y_center>` 是相对于图像宽度和高度的比例坐标,范围应在 `[0, 1]` 中[^2]。 - **增强处理**: 可通过数据增强技术提升模型泛化能力,例如随机裁剪、翻转、颜色抖动等操作。这些可以通过配置文件或脚本实现。 #### 性能调优最佳实践 性能调优涉及多个方面,包括硬件资源分配、算法调整以及分布式计算策略。 - **GPU 租赁**: 如果本地设备无法满足需求,可以考虑租赁 GPU 资源来加速训练过程。这不仅能够减少等待时间,还能显著降低内存占用成本[^3]。 - **混合精度训练**: 利用 NVIDIA Apex 或 PyTorch 自带的支持,在保持相同收敛效果的同时加快训练速度并节省显存消耗。 - **正则化方法**: 添加权重衰减项到损失函数有助于防止过拟合现象发生;此外还可以尝试 dropout 层或者 label smoothing 技术进一步改善结果质量。 ```python import torch.optim as optim from torch.nn import CrossEntropyLoss optimizer = optim.AdamW(model.parameters(), lr=0.001, weight_decay=0.0001) loss_fn = CrossEntropyLoss(label_smoothing=0.1) ``` 以上代码片段展示了如何应用 AdamW 作为优化器,并引入了 Label Smoothing 来改进分类任务的表现。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值