tensorflow2.0初探—简介

1、Tensorflow2.0——简化的模型开发流程

使用tf.data加载数据

使用tf.keras构建模型,使用premade estimator验证模型

使用Tensorflow hub进行迁移学习

使用eager mode进行运行和调试

使用分发策略进行分布式训练

导出到SaveModel

使用Tensorflow Serve、Tensorflow Lite、Tensorflow.js部署模型

2、Tensorflow2.0——强大的跨平台能力

Tensorflow服务

直接通过HTTP/REST或GRPC/协议缓冲区

Tensorflow Lite——可部署在Android、IOS和嵌入式系统上

Tensorflow.js ——可在javascript中部署模型

其他语言:C、JAVA、GO、C#、Rust、Julia、R

3、Tensorflow2.0——强大的研究实验能力

keras功能API和子类API、允许创建复杂的拓扑结构

自定义的训练逻辑,使用tf.GradientTape和tf.custom_gradient进行更细粒度的控制

底层API(卷积、pooling)自始至终可以与高层(keras)结合使用,完全的可定制。

高级扩展:Ragged Tensors、Tensor2Tensor等

发布了16 篇原创文章 · 获赞 6 · 访问量 1万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览