[HYSBZ/BZOJ2301]Problem b [莫比乌斯反演+分块] 【组合数学】

题目连接:https://vjudge.net/problem/HYSBZ-2301

————————————————————————————————————–.
2301: [HAOI2011]Problem b

Time Limit: 50 Sec
Memory Limit: 256 MB

Description

对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。

Input
第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k

Output
共n行,每行一个整数表示满足要求的数对(x,y)的个数

Sample Input

2
2 5 1 5 1
1 5 1 5 2

Sample Output

14
3

HINT

100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000

————————————————————————————————————–.

解题思路:
对于求(a,c) (b,d)区间内的解 我们可以用容斥原理解决
calc(b,d)calc(a1,d)calc(b,c1)+calc(a1,c1)

那么对于求每一个calc(x,y);时首先要明确的是求gcd(x,y)=k就是求gcd(x/k,y/k)=1的解,

证明 :
a×x+b×y=ka×xk+b×yk=1a×xk+b×yk=1
——证毕

然后设f(i)gcd(x,y)=i(x,y)F(i)i|gcd(x,y)(x,y)F(i)=nimi

然后根据莫比乌斯反演公式的到
F(n)=i|nf(i)=>f(d)=i|dμ(di)×F(d)=i|dμ(di)×nimi

当i=1时,f(1)=min(n,m)d=1μ(d)nm

由于ni的取值最多只有2n个(这个很容易证明:在nn+1<i<=n时,y=12......nn2<i<=nn3<i<=n2nn+1<i<=nn,到这里已经有sqrt(n)个取值了,还有n个i,即使每一个i都对应一个不同的ni,也只有n个取值),我们算出μ的前缀和sum,然后只需要O(2(n+m))的时间(即分块优化)回答每次询问。

参(chao)考(xi)于此

但是有一个奇怪的地方,就是我用%I64d输出 显示PE %lld输出 显示WA 用%d输出就AC了。。。。醉了。。。

附本题代码
————————————————————————————————————–.

int a,b,c,d,k;

int prime[N],pre[N],mu[N],kp;
bool Is_or[N];
void Prime(){
    kp = 0;
    memset(Is_or,true,sizeof(Is_or));
    Is_or[0]=Is_or[1]=0;
    mu[1]=pre[1]=1;
    for(int i=2;i<=50000;i++){
        if(Is_or[i]) mu[i]=-1,prime[kp++]=i;
        for(int j=0;j<kp&&prime[j]*i<=50000;j++){
            Is_or[prime[j]*i]=0;
            if(0==i%prime[j]) {mu[prime[j]*i]=0;break; }
            mu[prime[j]*i] = -mu[i];
        }
        pre[i]=pre[i-1]+mu[i];
    }
    return ;
}

int calc(int x,int y){
    x/=k,y/=k;
    if(x>y) x^=y,y^=x,x^=y;
    int ans = 0;
    for(int i=1,pos;i<=x;i=pos+1){//分块优化
        pos = min(x/(x/i),y/(y/i));
        ans+=(pre[pos]-pre[i-1])*(x/i)*(y/i);
    }
    return ans ;
}

void work(){
    scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
    printf("%d\n",calc(b,d)
                    -calc(a-1,d)
                    -calc(b,c-1)
                    +calc(a-1,c-1));
}

int main(){
    Prime();
    int _ = 1;
    //while(~scanf("%d",&_))
    scanf("%d",&_);
    while(_--)   work();

    return 0;
}
发布了332 篇原创文章 · 获赞 70 · 访问量 19万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览