UVA 10951 - Polynomial GCD []【数论】

题目链接:https://vjudge.net/problem/UVA-10951
———————————————————————–.

UVA的都是pdf ,复制粘贴不方便 去https://vjudge.net/problem/UVA-10951看吧

————————————————————————.

题目大意:
就是给你两个多项式,让你求解两个多项式的gcd ,其中系数对n去摸,且最高次幂的系数为1.

解题思路;
还是当做正常的gcd来做,这样的话,还是经典的欧几里得算法

template<typename T>
inline T _gcd(T a,T b){
    return (b==0)?a:_gcd(b,a%b);
}

那么这个问题就转化为如何对多项式取模。
这个很容易了,注意其中用逆元来计算除法就行了

多项式取模

附本题代码
—————————————————————-。

#include <bits/stdc++.h>

using namespace std;

#define INF        (~(1<<31))
#define INFLL      (~(1ll<<63))
#define pb         push_back
#define mp         make_pair
#define abs(a)     ((a)>0?(a):-(a))
#define lalal      puts("*******");
#define s1(x)      scanf("%d",&x)
#define Rep(a,b,c) for(int a=(b);a<=(c);a++)
#define Per(a,b,c) for(int a=(b);a>=(c);a--)

typedef long long int LL ;
typedef unsigned long long int uLL ;

const int    N   = 50000+7;
const int    MOD = 1e9+7;
const double eps = 1e-7;
const double Pi  = acos(-1.0);
const double E   = exp(1.0);

inline int read(){
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}

void fre(){
    freopen("in.txt","r",stdin);
    freopen("out.txt","w",stdout);
}

template<typename T>inline T _gcd(T a,T b){return (b==0)?a:_gcd(b,a%b);}
template<typename T>inline T _lcm(T a,T b){return        a/_gcd(a,b)*b;}
LL qmod(LL a,LL b,LL c){LL ret=1ll;while(b){if(b&1)ret=ret*a%c;b>>=1,a=a*a%c;}return ret;}
/***********************************************************************/

#define vi vector<int>

int n;

int inv(int x){
    return qmod(x,n-2,n);
}

vi vimod(vi f,vi g){
    int fz = f.size(),gz = g.size();
    for(int i=0;i<fz;i++){
        if(fz-i-gz < 0) break;
        int a=f[i]*inv(g[0])%n;
        for(int j=0;j<gz;j++){
            int now=i+j;
            f[now]=((f[now]-a*g[j]%n)%n+n)%n;
        }
    }

    vi ans;
    int p=-1;
    for(int i=0;i<fz;i++)if(f[i]!=0){p=i;break;}
    if(p>=0) for(int i=p;i<fz;i++)ans.pb(f[i]);
    return ans;

}

vi gcd(vi f,vi g){
    if(g.size()==0) return f;
    return  gcd(g,vimod(f,g));
}
vi f,g;
int main(){
    int kcase = 0;
    while(~scanf("%d",&n)&&n){
        f.clear(),g.clear();
        int d,x;
        scanf("%d",&d);
        for(int i=0;i<=d;i++){
            scanf("%d",&x);
            f.pb(x);
        }
        scanf("%d",&d);
        for(int i=0;i<=d;i++){
            scanf("%d",&x);
            g.pb(x);
        }
        vi ans = gcd(f,g);
        int tmp = inv(ans[0]);
        printf("Case %d: %d",++kcase,ans.size()-1);
        for(int i=0;i<ans.size();i++){
            printf(" %d",ans[i]*tmp%n);
        }
        puts("");
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值