UVa 10951 Polynomial GCD (数论)

UVa 10951 Polynomial GCD

题目大意:

给定两个 Zn 上的多项式 f(x) g(x) ,求出他们的 gcd ,即 Zn 上的一个多项式 r(x) ,使得其可以同时整除 f(x) g(x) ,且次数尽量大.你找到的多项式的最高项系数应当为 1 .
(注意:Zn下的多项式即系数为[0,n)区间内的整十数,也就是说在n进制下的计算).

题目分析:

求解最大公因数的方法是辗转相除法,也可以推广求最大公因式,问题在于如何定义模运算.

因为模运算的结果一定小于模数,如

a=x4+x3+x2+x+1,b=x2+x+1

所以 a%b 的结果一定是小于b的,那么结果的最高次项一定小于b的最高此项.
那么将 a 中的x4,x3,x2均抵消掉即可.

代码:

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<vector>

using namespace std;

#define inv(x) pow_mod(x,MOD-2)

int MOD;

int pow_mod(int x,int y)
{
    int ret=1;
    while(y>0) {
        if(y&1) ret=ret*x%MOD;
        x=x*x%MOD;y>>=1;
    }
    return ret;
}

struct Polynomial  {
    vector<int>poly;
    Polynomial operator % (const Polynomial& rhs) const {//a%b就是指将a中比b次数高的项抵消掉 
        Polynomial tmp=*this,ret;
        int t=tmp.poly.size()-rhs.poly.size();
        int v=inv(rhs.poly[0]);
        for(int i=0;i<=t;i++) {
            int d=tmp.poly[i]*v%MOD;
            for(int j=0;j<rhs.poly.size();j++)
                (tmp.poly[i+j]-=d*rhs.poly[j]%MOD-MOD)%=MOD;
        }
        int pos=-1;
        for(int i=0;i<tmp.poly.size();i++)
            if(tmp.poly[i]!=0) {pos=i;break;}
        if(pos>=0) for(int i=pos;i<tmp.poly.size();i++)
            ret.poly.push_back(tmp.poly[i]);
        return ret;
    }
    void input() {
        poly.clear();
        int n;
        scanf("%d",&n);
        for(int t,i=0;i<=n;i++) {
            scanf("%d",&t);
            poly.push_back(t);
        }
    }
    void output() {
        printf("%d",poly.size()-1);
        int v=inv(poly[0]);
        for(int i=0;i<poly.size();i++) printf(" %d",poly[i]*v%MOD);
    }
}f,g,ans;

Polynomial gcd(Polynomial a,Polynomial b)
{
    return b.poly.size()?gcd(b,a%b):a;
}

int main()
{
    int kase=0;
    while(scanf("%d",&MOD)==1&&MOD) {
        f.input();g.input();
        ans=gcd(f,g);
        printf("Case %d: ",++kase);
        ans.output();
        printf("\n");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值