总结下,
看题慢,读错题,代码能力渣,思维不敏捷,菜的一逼。
Shell Game
————————————————————————————————————————————
傻逼题,,
明确题意
枚举下所有情况 就能AC了。。
int main(){
int n,x;
scanf("%d",&n);
scanf("%d",&x);
n%=6;
if(x==0){
if(n== 5|| n==0 ) puts("0");
if(n== 2|| n==1 ) puts("1");
if(n== 4|| n==3 ) puts("2");
}
if(x==1){
if(n== 1|| n==4 ) puts("0");
if(n== 5|| n==2 ) puts("2");
if(n== 3|| n==0 ) puts("1");
}
if(x==2){
if(n== 3|| n==2 ) puts("0");
if(n== 5|| n==4 ) puts("1");
if(n== 1|| n==0 ) puts("2");
}
return 0;
}
Game of Credit Cards
————————————————————————————————————————————
贪心题
先对两个序列排序,
对于两个问题要分开考虑,
但是大同小异 ,
第一个就是尽量抗伤害
第二个就是尽量输出,类似田忌赛马
#include <bits/stdc++.h>
typedef long long int LL ;
using namespace std;
const int N = 100000+7;
const int MOD = 1000000007;
/*******************************************************/
#define all(x) x.begin(),x.end()
int main() {
int n;
cin >>n;
string a,b;
cin>>a>>b;
sort(all(a));
sort(all(b));
int ans1 = n;
for (int i=0,j=0; i<n; ++i) {
if (b[i] >= a[j]) {
ans1--;
j++;
}
}
int ans2 = 0;
for (int i=0,j; i<n; ++i) {
if (b[i] > a[j]) {
ans2++;
j++;
}
}
cout <<ans1 <<endl <<ans2 <<endl;
}
Alyona and Spreadsheet
————————————————————————————————————————————
给你一个N*M的方阵,每个方阵有一个值,有Q次询问,
问你第x行到第y行中存不存在一列是单调不减的 存在yes 否则no
其实很简单,我预处理出来到每一行的最长的那个列就好了,
然后询问的时候就能做到O(1)
详看代码吧
#include <bits/stdc++.h>
typedef long long int LL ;
using namespace std;
const int N = 1e5+7;
const int MOD = 1000000007;
/*******************************************************/
vector<int >a[100005];
vector<int >b[100005];
int h[100005];
int main(){
int n,m,x;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
a[i].clear();
a[i].push_back(0);
b[i].push_back(0);
for(int j=1;j<=m;j++){
scanf("%d",&x);
a[i].push_back(x);
b[i].push_back(0);
}
}
for(int i=2;i<=n;i++){
for(int j=1;j<=m;j++){
if(a[i][j]<a[i-1][j]){
a[i-1][j]=0;
}
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
if(0!=a[i][j]) a[i][j]=1;
}
}
for(int j=1;j<=m;j++)b[1][j]=1;
for(int i=2;i<=n;i++){
for(int j=1;j<=m;j++){
b[i][j]=1+b[i-1][j];
if(a[i-1][j]==0) b[i][j]=1;
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
h[i]=max(h[i],b[i][j]);
}
}
int q,l,r;
scanf("%d",&q);
while(q--){
scanf("%d%d",&l,&r);
if(h[r]>=r-l+1) puts("Yes");
else puts("No");
}
return 0;
}
Cloud of Hashtags
————————————————————————————————————————————
给你一堆字符串 对于每个字符串只能删除后缀, 删除最少的字符 使得这些字符串字典序单调不减
正着考虑 很明显 无法解决,
但是因为只能删后缀,那么从后向前考虑就没有问题了
只要使得s[i-1]的字典序依次小于s[i]就行了
自己的代码太丑了
献上巨巨优美的代码
#include <bits/stdc++.h>
typedef long long int LL ;
using namespace std;
const int N = 1e5+7;
const int MOD = 1000000007;
/*******************************************************/
int n, l[500005]; string s[500005];
void solve(int x, int y) {
int len = min(l[x], l[y]);
for(int i=0;i<=len-1;i++) {
if (s[x][i] < s[y][i]) return ;
if (s[x][i] > s[y][i]) {
l[x] = i;
return ;
}
}
if (l[x] <= l[y]) return; else l[x] = len;
}
int main() {
scanf("%d", &n);
for(int i=1;i<=n;i++) cin >> s[i], l[i] = s[i].length();
for (int i = n; i > 1; -- i) solve(i - 1, i);
for(int i=1;i<=n;i++) {
for(int j=0;j<=l[i]-1;j++) printf("%c", s[i][j]);
printf("\n");
}
return 0;
}
Hanoi Factory
————————————————————————————————————————————
给你一堆圆圈,有内半径和外半径 还有厚度,,现在让你将其摞在一起 ,
外半径大的不能再外半径小的上面,
不能从内半径中掉出去
问你能摞成的厚度最大是多少
很简单,先对外半径升序排相等的使内半径升序
然后从前开始找,能摞在这个圆圈上的厚度最大的为多少,
维护个最大值就行了
用线段树维护半径就行了,注意要离散化.
(后看到有人使用树状数组维护的因为维护的是前缀最大,所以没毛病,当时可能脑袋有点浑,并没有看太清晰就写了。。
#include <bits/stdc++.h>
typedef long long int LL ;
using namespace std;
const int N = 1e5+7;
const int MOD = 1000000007;
/*******************************************************/
struct node{
int l,r; //节点的区间
LL mx; //节点的值
int m(){return (l+r)>>1;}
int len(){return r-l+1;}
}tree[N<<3];
#define ll (rt<<1)
#define rr (rt<<1|1)
#define mid (tree[rt].m())
void pushup(int rt) {
tree[rt].mx=max(tree[ll].mx,tree[rr].mx);
}
void build(int rt,int l,int r){
tree[rt].l=l,tree[rt].r=r,tree[rt].mx=0;;
if(l==r) return ;
build(ll,l,mid);
build(rr,mid+1,r);
}
void update(int rt,int pos,LL mx){
if(tree[rt].l==tree[rt].r){
tree[rt].mx=mx;
return;
}
if(pos<=mid) update(ll,pos,mx);
else update(rr,pos,mx);
pushup(rt);
}
LL query(int rt,int L,int R){
// printf("%d %d\n",tree[rt].l,tree[rt].r);
if(L<=tree[rt].l&&tree[rt].r<=R)
return tree[rt].mx;
LL a=0,b=0;
if(L<=mid) a=query(ll,L,R);
if(R> mid) b=query(rr,L,R);
return max(a,b);
}
/*******************************/
struct node2 {
int a,b,h;
}r[100005];
int p[200005];
bool cmp(node2 A,node2 B){
if(A.b==B.b) return A.a<B.a;
return A.b<B.b;
}
LL dp[100005];
int n,sz;
int ls(int x){
return lower_bound(p+1,p+sz+1,x)-p;
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d%d%d",&r[i].a,&r[i].b,&r[i].h);
p[i]=r[i].a,p[i+n]=r[i].b;
}
sort(r+1,r+n+1,cmp);
sort(p+1,p+1+n*2);
sz = unique(p+1,p+1+n*2)-(p+1);
build(1,1,sz);
// for(int i=1;i<=n;i++){
// printf("%d %d %d\n",r[i].a,r[i].b,r[i].h);
// }
LL mx = 0;
for(int i=1;i<=n;i++){
dp[i]=r[i].h;
dp[i]+=query(1,ls(r[i].a+1),ls(r[i].b));
// printf("%lld\n",query(1,ls(r[i].a+1),ls(r[i].b)));
update(1,ls(r[i].b),dp[i]);
mx = max(mx,dp[i]);
}
printf("%lld\n",mx);
return 0;
}