从零开始深度学习
程序员刚子
编码半生,归来仍是少年
展开
-
从零开始深度学习0617——李宏毅 GAN
李宏毅 GANGAN是一种无监督学习方法的模型G与D 交错迭代训练可以看做是一个大的NN 前面几层hidden layer 是G 后面几层hidden layer 是D训练时,每次固定G 训练D,固定D训练G先训练判别器 再训练生成器 循环往复如下两步:通过随机的vector 生成了一组图像,从database中也拿到一组图像 ,送到D中,这时固定住G,就是根据这两组图像去训练D,使得GT 得到更高的分数,fake 得到低的分数...原创 2020-06-18 20:57:58 · 246 阅读 · 0 评论 -
从零开始深度学习0616——pytorch入门之GAN+dynamic torch+GPU(cuda)+dropout+BN
#-------------------------------conditional GAN-----------------###################################################################################################################################参考百度百科https://baike.baidu.com/item/Gan/22181905?fr=a..原创 2020-06-16 20:32:03 · 528 阅读 · 0 评论 -
从零开始深度学习0615——pytorch入门之自编码AutoEncoder
-------------------------Autoencoder----------------------------------------############################################################################################################################非监督学习可以类比PCA进行降维完整程序:import torchim.原创 2020-06-16 20:27:11 · 285 阅读 · 0 评论 -
从零开始深度学习0614——pytorch入门之RNN实现图像分类和回归预测
用RNN处理图像如何将图像的处理理解为时间序列可以理解为时间序顺序为从上到下Mnist图像的处理 一个图像为28*28 pixel时间顺序就是从上往下,从第一行到第28行# Hyper ParametersEPOCH = 1BATCH_SIZE = 64TIME_STEP = 28 # rnn time step / image height 一共输入time_step次。 时序步长数 seq_lenINPUT_SIZE = 28...原创 2020-06-16 20:21:52 · 3971 阅读 · 3 评论 -
从零开始深度学习0613——pytorch入门之optimizer+CNN手写数字识别
------------------optimizer-----------------------------------------------Python中Zip() 函数>>>a = [1,2,3]>>> b = [4,5,6]>>> c = [4,5,6,7,8]>>> zipped = zip(a,b) # 打包为元组的列表 [(1, 4), (2, 5), (3, 6)]>>..原创 2020-06-16 20:13:07 · 496 阅读 · 0 评论 -
从零开始深度学习0612——pytorch入门之保存与加载+批训练
----------------------------- Save and reload -------------------------################################################################################################################################### torch.manual_seed(1) # reproducible#...原创 2020-06-16 20:08:57 · 202 阅读 · 0 评论 -
从零开始深度学习0611——pytorch入门之Pytorch 与 numpy 区别+variable+activation+regression+classification+快速搭建
--------------------- Pytorch 与 numpy 区别----------------------------##################################################################################################################Numpy与torch 数据格式的转换Torch为tensor 张量的形式np_data = np....原创 2020-06-16 09:29:12 · 266 阅读 · 0 评论 -
从零开始深度学习0604——使用hugo搭建博客
使用hugo搭建博客从https://github.com/gohugoio/hugo/releases 下载推荐选择 带有extend扩展包的安装包因为第一次我没选择带有extend的这个,花了一下午时间找原因然后解压后,将文件夹内hugo.exe 的路径 配置到环境变量在cmd中 hugo new site E:\GitMyblogRepository 建立自己的博客文件夹目录如下然后cmd中cd到博客的根目录 hugo new ...原创 2020-06-16 09:24:07 · 340 阅读 · 0 评论 -
从零开始深度学习0602——caffe 解决安装报错问题
安装caffeImportError: DLL load failed: 找不到指定的模块pycaffe import caffe报错:from ._caffe import Net, SGDSolver, NesterovSolver, AdaGradSolver, \ ImportError: DLL load failed: 找不到指定的模块查询结果无果如果运行环境是Windows 7/10 64位Anaconda3 + Pytho...原创 2020-06-16 09:21:34 · 991 阅读 · 1 评论 -
从零开始深度学习0601——pytorch 解决报错 AvgPool2d object has no attribute divisor_override
原先pytorch 是在官网下载的 pytorch1.4+cud9.2但是在运行一个代码时加载的预训练参数模型是pytorch1.0版本的因为版本不匹配所以在运行时报错'AvgPool2d' object has no attribute 'divisor_override'解决无果 只能降低自己的pytouch版本到1.0卸载torch1.4+cud9.2 和 torchvision0.6.0+cud9.2pip uninstall torchpip ...原创 2020-06-16 09:13:08 · 1613 阅读 · 0 评论 -
从零开始深度学习0530——Seq2seq模型简单了解
Seq2seq模型 ---------Sequence to Sequencehttps://www.jianshu.com/p/b2b95f945a98https://blog.csdn.net/wangyangzhizhou/article/details/77883152它实现了从一个序列到另外一个序列的转换,比如google曾用seq2seq模型加attention模型来实现了翻译功能,类似的还可以实现聊天机器人对话模型。经典的rnn模型固定了输入序列和输出序列的大小,而se...原创 2020-06-15 21:24:39 · 221 阅读 · 0 评论 -
从零开始深度学习0521——keras基本知识+GAP理解
Keras 中经常可以看到K.image_data_format() == 'channels_first'深度学习中 Flatten层 的作用 < GAPFlatten层的实现在Keras.layers.core.Flatten()类中。作用:Flatten层用来将输入“压平”,即把多维的输入一维化,常用在从卷积层到全连接层的过渡。Flatten不影响batch的大小。from keras.models import Sequent...原创 2020-06-15 21:23:50 · 2869 阅读 · 0 评论 -
从零开始深度学习0519——图像检索基本知识
视频摘要与视频浓缩(video summarization and video synopsis) 视频摘要是从原始视频中提取有代表性的关键帧,而视频浓缩将多帧视频合并成一帧。如果是在低维度的小数据集中,可以使用线性查找(Linear Search)的方法,但是在高纬度大数据集中,线性查找的效率很低,显然是不可行的。如何的从大的高维数据集中找到与某个向量最相似的一个或多个向量,是图像检索中一个难点。在这种高纬度大数据集中的检索,通常需要使用最近邻最相似查找(Approximate Nea..原创 2020-06-15 21:18:26 · 825 阅读 · 0 评论 -
从零开始深度学习0518——BOW词包模型基本知识
视觉单词 可以 理解为就是 Local Feature什么是Local Feature 呢包含两个信息:坐标位置(x,y)描述符(描述算子 descriptor) 这个描述符是用来可以被量化比对的 做match计算机视觉中 最重要的Local Feature 就是SIFT :Scale Invariant Feature TransformSIFT 是一种非常典型的 著名的Local Feature同样包含刚刚说的两个信息:坐标位置 ...原创 2020-06-15 21:16:30 · 1178 阅读 · 0 评论 -
从零开始深度学习0513——CBIR基本知识
0513感受野衡量某一层的feature map 中的某一个cell 对应到原图输入的响应区域大小如图 输入层11*11 没有zero-padding经过第一层5*5 conv 得到feature map 为7*7经过第二层7*7conv 得到feature map 为1*1所以可以知道 假如这个1*1是最后整个feature map 中的其中一个cell 根据上面的话,可以知道它对应的感受野就为11*11,也就是对应输入图像的响应区域大小...原创 2020-06-12 09:04:34 · 1258 阅读 · 0 评论 -
从零开始深度学习0511——inceptionv3迁移学习
0511池化层完后,要去reshape迁移学习https://zhuanlan.zhihu.com/p/26693647迁移学习:在ImageNet上得到一个预训练好的ConvNet网络,删除网络顶部的全连接层,然后将ConvNet网络的剩余部分作为新数据集的特征提取层。这也就是说,我们使用了ImageNet提取到的图像特征,为新数据集训练分类器。微调:更换或者重新训练ConvNet网络顶部的分类器,还可以通过反向传播算法调整预训练网络的权重。...原创 2020-06-12 09:02:32 · 757 阅读 · 0 评论 -
从零开始深度学习0510——RNN+LSTM基本知识+LSTM做回归任务实例
0510RNN的东西不会去忘记,直接一串子全部保留下来Lstm 长短时记忆 可以控制这个参数也是需要去训练 逐渐优化 得到的门单元ft 遗忘门 it 保留门输入经过了一个遗忘门,经过了一个保留门选择性的遗忘和保留 是随时更新ct的状态的 从开始更新到结束Classification and Location 分类与回归分类就是 输入图像 输出类别回归就是 输入图像 输出这个图像的(x,y,w,h) 就是定位,找到坐...原创 2020-06-12 08:59:34 · 1265 阅读 · 0 评论 -
从零开始深度学习0509——tensorflow基本用法及mnist实例
0509https://blog.csdn.net/goldxwang/article/details/78790797tf.equal(tf.argmax(y, 1),tf.argmax(y_, 1))用法https://blog.csdn.net/ZHANGHUIHUIA/article/details/83784943利用tf.argmax()按行求出真实值y_、预测值y最大值的下标,用tf.equal()求出真实值和预测值相等的数量,也就是预测结果正确的数量,tf....原创 2020-06-12 08:55:00 · 334 阅读 · 0 评论 -
从零开始深度学习0508——常用函数解释
0508优化器OptimizerMomentumAdaGradRMSPropAdam常用Momentum Adam都是考虑到上一次优化的学习率的下降趋势结合 现在的学习率,更快的达到全局最小量Tensorbord可视化需要用到tf.namescope(‘…’)cd 到目录 然后执行 tensorboard --logdir='logs/'一些tensorboard的方法 在p...原创 2020-06-11 22:44:30 · 178 阅读 · 0 评论 -
从零开始深度学习0507——Tensorflow学习
Tensorflow学习命名规范矩阵变量 命名 首字母大写 如 Weights常量 命名 正常 如 biasestf.constant()tensorflow 创建常量,即张量tensorhttps://blog.csdn.net/csdn_jiayu/article/details/82155224tensor=tf.constant([1, 2])为查看结果必须创建一个会话,并用取值函数eval()来查看创建的ten...原创 2020-06-11 22:40:56 · 172 阅读 · 0 评论 -
从零开始深度学习0506——CNN基本知识
0506 卷积神经网络传统神经网络与卷积神经网络的对比组成Input –conv –relu – pool – FC输入层卷积层激活函数池化层全连接层卷积核 即 滤波器 也就是权重参数32-5+1=28卷积核的大小必须要与输入层的通道数相同 32*32*3 卷积核就是5*5*3 使用6个卷积核 得到结果就是 28*28*6 所以 第二次卷积时 卷积核就是5*5*6 使用10个卷积核 结果就是24*24...原创 2020-06-11 22:38:11 · 295 阅读 · 0 评论 -
从零开始深度学习0421——CNN损失函数梯度求导
0421softmax两个不同的写法https://www.zybuluo.com/nrailgun/note/325347反向传播 推导原创 2020-06-11 22:34:20 · 344 阅读 · 0 评论 -
从零开始深度学习0420——CNN反向传播梯度求导
0420反向传播 具体代码 还是理解有问题probs[range(num_examples),y] ???自己理解就是将交叉熵损失函数https://blog.csdn.net/han_xiaoyang/article/details/50521072https://blog.csdn.net/weixin_37567451/article/details/80895309softmax求导过程https://www.ji...原创 2020-06-11 22:33:04 · 282 阅读 · 0 评论 -
从零开始深度学习0419——CNN基本知识
0419B站深度学习视频https://www.bilibili.com/video/BV1ht411i7Ld?p=112-17 总结神经网络泛化能力一定要强激活函数与损失函数https://www.jianshu.com/p/e5bcdd932d05激活函数的作用线性模型的表达能力不够,激活函数增加神经网络模型的非线性,提升神经网络模型表达能力(数据往往线性不可分 )。几种激活函数:Sigmoid:常用来做二分类任务,会造成梯度消失Tanh:...原创 2020-06-11 22:29:43 · 419 阅读 · 0 评论 -
从零开始深度学习0418——CNN基本知识
0418B站深度学习视频https://www.bilibili.com/video/BV1ht411i7Ld?p=1 0-11 总结计算机视觉识别图像都是转换成三维数组。K-近邻算法 KNNK近邻会把背景因素考虑进来Numpy.argminhttps://zhidao.baidu.com/question/987582984789125539.htmlNumpy.zeroshttps://blog.csdn.net/lens...原创 2020-06-11 22:28:08 · 279 阅读 · 0 评论 -
从零开始深度学习0416——基本知识
今天0416深度学习与神经网络的关系,神经网络的作用,在什么位置https://blog.csdn.net/a493823882/article/details/83548447https://blog.csdn.net/m0_37468171/article/details/90744525?depth_1-utm_source=distribute.pc_relevant.none-task-blog-OPENSEARCH-2&utm_source=distribute...原创 2020-06-11 22:23:11 · 424 阅读 · 0 评论