从零开始深度学习0510——RNN+LSTM基本知识+LSTM做回归任务实例

0510

 

RNN的东西不会去忘记,直接一串子全部保留下来

 

Lstm 长短时记忆  

可以控制

这个参数也是需要去训练 逐渐优化 得到的

门单元

ft 遗忘门   it 保留门

输入经过了一个遗忘门,经过了一个保留门

选择性的遗忘和保留  是随时更新ct的状态的 从开始更新到结束

 

Classification and Location 分类与回归

分类就是 输入图像 输出类别

回归就是 输入图像 输出这个图像的(x,y,w,h) 就是定位,找到坐标和长宽高

将回归的任务  加在哪里

 

L2 distance 欧式距离

L2 regularliaztion  L2正则化惩罚项   

L2 loss  均方误差 常用来做回归任务  MSE

 

用活动窗口的做法  去进行回归任务

 

其他深度神经网络  在达到一定的层数后,层数越深,不一定效果越好

但是ResNet 是层数越深,效果越好

 

 

 

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值