吴恩达神经网络和深度学习(编程作业)--具有神经网络思维的逻辑回归

神经网络和深度学习
上一作业主目录 下一作业

前言

这是第二周的编程作业
以下只是主要部分的代码,需要用到的资料可以访问 我的GitHub 进行获取
这是我的文件目录:
在这里插入图片描述

我是用的PyCharm,如果你没有安装相应的依赖库,请按照以下方式进行安装:
首先打开:terminal
在这里插入图片描述
输入以下命令:

pip install matplotlib

诸如此类…


logistic_neural_network_regression.py文件:


import numpy as np
import matplotlib.pyplot as plt
import h5py
from lr_utils import load_dataset

train_set_x_orig , train_set_y , test_set_x_orig , test_set_y , classes = load_dataset()

m_train = train_set_y.shape[1] #训练集里图片的数量。
m_test = test_set_y.shape[1] #测试集里图片的数量。
num_px = train_set_x_orig.shape[1] #训练、测试集里面的图片的宽度和高度(均为64x64)。
#现在看一看我们加载的东西的具体情况
print ("训练集_图片的维数 : " + str(train_set_x_orig.shape))
print ("训练集_标签的维数 : " + str(train_set_y.shape))
print ("测试集_图片的维数: " + str(test_set_x_orig.shape))
print ("测试集_标签的维数: " + str(test_set_y.shape))
print ("训练集的数量: m_train = " + str(m_train))
print ("测试集的数量 : m_test = " + str(m_test))
print ("每张图片的宽/高 : num_px = " + str(num_px))
print ("每张图片的大小 : (" + str(num_px) + ", " + str(num_px) + ", 3)")

#将训练集的维度降低并转置。将形状(a,b,c,d)的矩阵X平铺成形状(b * c * d,a)的矩阵
train_set_x_flatten  = train_set_x_orig.reshape(train_set_x_orig.shape[0],-1).T
#将测试集的维度降低并转置。
test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T

print ("训练集降维最后的维度: " + str(train_set_x_flatten.shape))
print ("训练集_标签的维数 : " + str(train_set_y.shape))
print ("测试集降维之后的维度: " + str(test_set_x_flatten.shape))
print ("测试集_标签的维数 : " + str(test_set_y.shape))
#归一化
train_set_x = train_set_x_flatten / 255
test_set_x = test_set_x_flatten / 255


#定义sigmoid函数
def sigmoid(z):
    """
    参数:
        z  - 任何大小的标量或numpy数组(print(sigmoid(np.array([2,-4,0])))的返回值是[0.88079708 0.01798621 0.5       ],
             它会分别计算数组元素然后将结果装入数组中返回)

    返回:
        s  -  sigmoid(z)
    """
    s = 1 / (1 + np.exp(-z))
    return s




def initialize_with_zeros(dim):
    """
        此函数为w创建一个维度为(dim,1)的0向量,并将b初始化为0。

        参数:
            dim  - 我们想要的w矢量的大小(或者这种情况下的参数数量)

        返回:
            w  - 维度为(dim,1)的初始化向量。
            b  - 初始化的标量(对应于偏差)
    """
    w = np.zeros(shape = (dim,1))
    b = 0
    #使用断言来确保我要的数据是正确的
    assert(w.shape == (dim, 1)) #w的维度是(dim,1)
    assert(isinstance(b, float) or isinstance(b, int)) #b的类型是float或者是int
    return (w , b)



def propagate(w, b, X, Y):
    """
    实现前向和后向传播的成本函数及其梯度。
    参数:
        w  - 权重,大小不等的数组(num_px * num_px * 3,1)
        b  - 偏差,一个标量
        X  - 矩阵类型为(num_px * num_px * 3,训练数量)
        Y  - 真正的“标签”矢量(如果非猫则为0,如果是猫则为1),矩阵维度为(1,训练数据数量)

    返回:返回代价以及J对w和b的偏导数以进行优化
        cost- 逻辑回归的负对数似然成本,相当于J(a,y)即代价函数
        dw  - 相对于w的损失梯度,因此与w相同的形状
        db  - 相对于b的损失梯度,因此与b的形状相同
    """
    m = X.shape[1]#样本个数
    #正向传播
    A = sigmoid(np.dot(w.T,X) + b) #计算激活值,请参考公式2。。A是(1,m)维度的
    cost = (- 1 / m) * np.sum(Y * np.log(A) + (1 - Y) * (np.log(1 - A))) #计算成本,,相当于J(a,y)即代价函数
    #反向传播,梯度下降算法,需要用到J对w和b的导数等。J对z的倒数结果是A-Y
    dw = (1 / m) * np.dot(X, (A - Y).T) #请参考视频中的偏导公式。(num_px * num_px * 3,1)
    db = (1 / m) * np.sum(A - Y) #请参考视频中的偏导公式。(1,1)
    #使用断言确保我的数据是正确的
    assert(dw.shape == w.shape)
    assert(db.dtype == float)
    cost = np.squeeze(cost)
    assert(cost.shape == ())
    #创建一个字典(键值对),把dw和db保存起来。
    grads = {
                "dw": dw,
                "db": db
             }
    return (grads , cost)




def optimize(w , b , X , Y , num_iterations , learning_rate , print_cost = False):
    """
    此函数通过运行梯度下降算法来优化w和b

    参数:
        w  - 权重,大小不等的数组(num_px * num_px * 3,1)
        b  - 偏差,一个标量
        X  - 维度为(num_px * num_px * 3,训练数据的数量)的数组。
        Y  - 真正的“标签”矢量(如果非猫则为0,如果是猫则为1),矩阵维度为(1,训练数据的数量)
        num_iterations  - 优化循环的迭代次数
        learning_rate  - 梯度下降更新规则的学习率,即阿尔法
        print_cost  - 每100步打印一次损失值

    返回:
        params  - 包含权重w和偏差b的字典
        grads  - 包含权重和偏差相对于成本函数的梯度的字典
        成本 - 优化期间计算的所有成本列表,将用于绘制学习曲线。

    提示:
    我们需要写下两个步骤并遍历它们:
        1)计算当前参数的成本和梯度,使用propagate()。
        2)使用w和b的梯度下降法则更新参数。
    """
    costs = []
    #进行迭代
    for i in range(num_iterations):
        #调用传播函数得到cost,dw和db
        grads, cost = propagate(w, b, X, Y)
        dw = grads["dw"] #(num_px * num_px * 3,1)
        db = grads["db"] #(1,1)
        #梯度下降算法更新w,b等参数
        w = w - learning_rate * dw #(num_px * num_px * 3,1)
        b = b - learning_rate * db #(1,1)
        #记录成本
        if i % 100 == 0:
            costs.append(cost)
            print_cost=True
        #打印学习过程的成本数据
        if (print_cost) and (i % 100 == 0):
            print("迭代的次数: %i , 误差值: %f" % (i,cost))
    #迭代完成后,返回参数w和b,偏导数dw和db,损失(误差值)costs[](每迭代一百次往数组中记录一次误差)
    params  = {
                "w" : w,
                "b" : b }
    grads = {
            "dw": dw,
            "db": db }
    return (params , grads , costs)




def predict(w , b , X ):
    """
    使用学习逻辑回归参数logistic (w,b)预测标签是0还是1,
    参数:
        w  - 权重,大小不等的数组(num_px * num_px * 3,1)
        b  - 偏差,一个标量
        X  - 维度为(num_px * num_px * 3,训练数据的数量)的数据
    返回:
        Y_prediction  - 包含X中所有图片的所有预测【0 | 1】的一个numpy数组(向量),维度为(1,训练数据的数量m)

    """
    m  = X.shape[1] #图片的数量
    Y_prediction = np.zeros((1,m)) #注意双括号
    w = w.reshape(X.shape[0],1) #(num_px * num_px * 3,1)
    #计预测猫在图片中出现的概率
    A = sigmoid(np.dot(w.T , X) + b) #(1,m)
    for i in range(A.shape[1]):
        #将概率(0-1的概率值)转换为实际预测(0或者1)
        Y_prediction[0,i] = 1 if A[0,i] > 0.5 else 0
    #使用断言
    assert(Y_prediction.shape == (1,m))

    return Y_prediction




def model(X_train , Y_train , X_test , Y_test , num_iterations = 2000 , learning_rate = 0.5 , print_cost = False):
    """
    通过调用之前实现的函数来构建逻辑回归模型
    参数:
        X_train  - numpy的数组,维度为(num_px * num_px * 3,m_train)的训练集
        Y_train  - numpy的数组,维度为(1,m_train)(矢量)的训练标签集
        X_test   - numpy的数组,维度为(num_px * num_px * 3,m_test)的测试集
        Y_test   - numpy的数组,维度为(1,m_test)的(向量)的测试标签集
        num_iterations  - 表示用于优化参数的迭代次数的超参数
        learning_rate  - 表示optimize()更新规则中使用的学习速率的超参数
        print_cost  - 设置为true以每100次迭代打印成本

    返回:
        d  - 包含有关模型信息的字典。
    """
    #初始化参数w(Nx=num_px * num_px * 3,1)及b(1,1)的值为0
    w , b = initialize_with_zeros(X_train.shape[0])
    #通过训练集学习最优化参数
    parameters , grads , costs = optimize(w , b , X_train , Y_train,num_iterations , learning_rate , print_cost)
    #从字典“参数”中检索参数w和b
    w , b = parameters["w"] , parameters["b"]
    #预测训练集/测试集的例子
    Y_prediction_train = predict(w , b, X_train) #(1,m_train训练集个数)
    Y_prediction_test = predict(w, b, X_test) #(1,m_test测试集个数)
    #打印训练后的准确性
    print("训练集准确性:"  , format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100) ,"%")
    print("测试集准确性:"  , format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100) ,"%")
    #使用数据字典的形式将结果集返回
    d = {
            "costs" : costs,
            "Y_prediction_test" : Y_prediction_test,
            "Y_prediciton_train" : Y_prediction_train,
            "w" : w,
            "b" : b,
            "learning_rate" : learning_rate,
            "num_iterations" : num_iterations }
    return d

d = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 2000, learning_rate = 0.005, print_cost = True)

print(d['costs'])

#绘制图
costs = np.squeeze(d['costs'])
plt.plot(costs)
plt.ylabel('cost')
plt.xlabel('iterations (per hundreds)')
plt.title("Learning rate =" + str(d["learning_rate"]))
plt.show()

lr_utils.py文件:

import numpy as np
import h5py
    
    
def load_dataset():
    train_dataset = h5py.File('datasets/train_catvnoncat.h5', "r")
    train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set features
    train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels

    test_dataset = h5py.File('datasets/test_catvnoncat.h5', "r")
    test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set features
    test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels

    classes = np.array(test_dataset["list_classes"][:]) # the list of classes
    
    train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))
    test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))
    
    return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes

神经网络和深度学习系列笔记: 传送门

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值