机器学习
鸡啄米的时光机
热爱探索,自制力,人工智能技术
展开
-
机器学习算法之-K-means聚类分析
k-means算法详解主要内容 k-means算法简介k-means算法详解k-means算法优缺点分析k-means算法改进算法k-means++1、k-means算法简介 k-means算法是一种聚类算法,所谓聚类,即根据相似性原则,将具有较高相似度的数据对象划分至同一类簇,将具有较高相异度的数据对象划分至不同类簇。聚类与分类最大的区别在于,聚类过程为无监督过程,即待处理数据对象没有任何先...原创 2018-06-29 22:09:32 · 952 阅读 · 0 评论 -
2019TinyMind人民币面值及编码识别比赛代码开源
1 综述有幸参加了2019TinyMind人民币面值及编码识别比赛,比赛的具体背景和要求如下所示。1.1 比赛背景1.2 具体任务比赛一共分类两个任务,第一轮任务是训练AI,识别每张图片的面值,面值一共分为0.1,0.2,0.5,1,2,5,10,50,100,一共9种标签,单位为元。1.3 数据说明1.4 第一阶段代码说明目前本人仅仅参与了第...原创 2019-08-04 22:07:17 · 1694 阅读 · 0 评论 -
ImportError: cannot import name 'exporter' from 'object_detection' (unknown location)的解决办法
最近在做基于tensofflow目标检测API的项目时候,在进行到模型生成步骤的时候,执行:python export_inference_graph.py --input_type image_tensor --pipeline_config_path training/ssd_mobilenet_v1_coco.config --trained_checkpoint_prefix tra...原创 2019-07-20 17:36:23 · 13779 阅读 · 4 评论 -
"深度之眼"AI自媒体联合"科赛"平台银行客户二分类算法比赛参赛经验分享
比赛简介近段时间参加了"深度之眼"联合"科赛"推出的银行客户二分类算法比赛,在“深度之眼”指导李老师的视频教学指导下,有幸复现出baseline。这里首先感谢平台和李老师。比赛链接:「二分类算法」提供银行精准营销解决方案。赛题描述数据集:选自UCI机器学习库中的「银行营销数据集(Bank Marketing Data Set)」这些数据与葡萄牙银行机构的营销活动相关。这些营销...原创 2019-06-27 17:08:22 · 2195 阅读 · 2 评论 -
集成学习中boosting、bagging、随机森林算法的介绍
集成学习的概念定义:集成学习通过构建并结合多个学习器来完成学习任务。分类:只包含同种类型的个体学习器,这样的集成是“同质”的,例如都是神经网络或者决策树;包含不同类型的个体学习器,这样的集成是“异质”的,例如同时包括神经网络和决策树。作用:集成学习通过将多个学习器进行结合,常可获得比单一学习器显著优越的泛化性能。条件:要获得较好的集成效果,应该要求学习器“好而不同”(这也是集成学习...原创 2018-08-26 13:20:52 · 1431 阅读 · 0 评论 -
大疆2019校招提前批机器学习算法工程师在线笔试题目回忆版
最后还涉及到两道16分的在线编程题目,但是我忘记了,故没有列出来,望大家原谅2333。大疆2019年校招提前批机器学习算法工程师B卷题目回忆版1 考察关于各种激活函数sigmoid、tanh、relu和leaky relu函数的优缺点比较 1.1 神经网络中引入激活函数的作用:激活函数就是映射,且函数几乎处处可导。一般认为激活函数的作用就是为了给神经网络加入非线性的因素,因为激活函数一般都是非线性...原创 2018-07-15 22:05:34 · 8924 阅读 · 2 评论 -
机器学习中的L1和L2正则化技术概述
使用机器学习算法过程中,如果太过于追求准确率,就可能会造成过拟合。使用正则化技术可以在一定程度上防止过拟合。首先来回顾一下过拟合的概念。过拟合简单来说就是对于当前的训练数据拟合程度过高以至于模型失去了泛化能力。下面是一个房屋预测的例子:左侧的图是欠拟合,即对于当前数据集的拟合程度不够,欠拟合的特征是在训练集和测试集上的准确率都不好。右边的为过拟合状态,过拟合对于当前数据拟合得太好了,以至于模型只在...原创 2018-07-06 15:48:42 · 668 阅读 · 0 评论 -
朴素贝叶斯分类器
本文讨论的是朴素贝叶斯分类器( Naive Bayes classifiers)背后的理论以及其的实现。朴素贝叶斯分类器是分类算法集合中基于贝叶斯理论的一种算法。它不是单一存在的,而是一个算法家族,在这个算法家族中它们都有共同的规则。例如每个被分类的特征对与其他的特征对都是相互独立的。开始之前,先看一下数据集。这是一个虚构的数据集,这个数据集描述的是天气是否适合打高尔夫球。已知天气情况,每个元组都...原创 2018-07-03 21:44:17 · 386 阅读 · 0 评论 -
带你理解熵
信息熵以及引出条件熵我们首先知道信息熵是考虑该随机变量的所有可能取值,即所有可能发生事件所带来的信息量的期望。公式如下:我们的条件熵的定义是:定义为X给定条件下,Y的条件概率分布的熵对X的数学期望这个还是比较抽象,下面我们解释一下:设有随机变量(X,Y),其联合概率分布为 条件熵H(Y|X)表示在已知随机变量X的条件下随机变量Y的不确定性。随机变量X给定的条件下随机变量Y的条件熵H(Y|X)2 ...原创 2018-07-03 19:53:03 · 638 阅读 · 0 评论 -
2020年校招科大国创软件股份有限公司大数据算法岗笔试真题
最近(2019.9.30日)参加了科大国创软件公司的算法工程师笔试,做的试卷内容主要偏大数据挖掘,试题内容如下,现在给出一些参考答案,如有错误和疑问,可以在后面给出评论。1 选择题1.1 下列有关k-mean算法说法正确的是()A:能自动识别类的个数,随机挑选初始点为中心点计算B:数据数量不多时,输入的数据的顺序不同会导致结果不同C:不能自动识别类的个数,不是随机挑选初始...原创 2019-10-02 09:07:20 · 4825 阅读 · 1 评论