深度学习
文章平均质量分 58
鸡啄米的时光机
热爱探索,自制力,人工智能技术
展开
-
cuda和cudnn版本对应关系
因为nvidia网站较慢,所以截图保存两者之间关系,不用每次查看都打开原创 2021-05-11 12:07:51 · 1925 阅读 · 0 评论 -
caffe中编译自定义或修改后的层
1. 背景最近需要训练人脸识别里面的CombinedMargin Loss方法,这个loss里面有一些新定义的层,并且对一个全连接层进行了源码修改。因此需要在官方的caffe源码基础上把这些新加的或修改的层添加进去到官方caffe源码里面,并重新编译,下面记录具体的编译步骤2. 修改caffe.proto文件2.1 我下载的caffe代码为官方链接,这里。然后我把官方链接git到了ub...原创 2020-04-27 17:27:23 · 393 阅读 · 0 评论 -
ubuntu16.04下面编译caffe_gpu的matlab接口
1 背景题主需要训练caffe的matlab接口的代码,因此就开始在ubuntu下面折腾的历程,记录一下在ubuntu下面编译caffe的matlab接口中遇到的各种问题及解决办法,防止下次遗忘,也希望可以帮助到有需要的朋友。2 下载caffe源码,配置Makefile.config题主选择CaffeMex_v2git clone https://github.com/liuyu...原创 2020-04-16 10:53:46 · 373 阅读 · 0 评论 -
使用ffmpeg工具将.wav文件转成真正格式的wav文件
最近做项目的时候,碰到一些后缀为.wav格式的音频文件,它们播放正常,但是却无法被wave正确的open,原因在于其并非是真正意义上的wav格式音频文件,可以通过强大的ffmpeg工具实现转化,命令如下1 在终端执行 ffmpeg -i a.wav b.wav,则将不正常的a.wav转化为正常的b.wav文件,转化后格式一般为16k采样,单声道,16bit精度。2 在python脚本中执行...原创 2019-08-28 00:42:42 · 1395 阅读 · 0 评论 -
解决Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocatio
直接上图:最近在训练一个语音识别程序的时候,执行训练脚本直接报错:Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.经过网上搜索,...原创 2019-09-01 21:23:38 · 19835 阅读 · 24 评论 -
Win10下面正确卸载Anaconda方法
1 正确卸载Anacoda1.1 首先打开Anaconda安装路径下面,有一个Uninstall-Anaconda.exe,双击即可。1.2 再用系统自带的卸载一遍使用上面的指令卸载完成以后,使用系统自带的卸载工具卸载一下,方法是到“系统” -> "卸载或更改程序",找到Anaconda,直接卸载即可1.3 手动删除卸载残留文件夹直接手动删除安装文件路...原创 2019-09-14 08:29:57 · 26967 阅读 · 2 评论 -
使用YoloV3 + deep_sort实现多人目标跟踪
本博客目前实现YoloV3 + deep_sort实现多人运动目标实时跟踪的流程跑通。1. 参考文献链接:https://github.com/qqwweee/keras-yolo3https://github.com/Qidian213/deep_sort_yolov3keras_yolov3:yolov3.weights转换为yolo.h5基于YOLOv3和deep_...原创 2019-09-15 12:23:50 · 11536 阅读 · 12 评论 -
GPU出现 “已放弃 (核心已转储)”解决办法
最近在做tensorflow目标检测API生成模型的时候,已经结束训练,但是无法生成模型,报错如下所示:分析错误的原因可能是GPU显存不足的原因导致了 "已放弃(核心已转储)"出现,我们现在看看是否真的还有没有杀掉的GPU进程执行 nvidia-smi: 果然发现有没有杀掉的进程执行 kill -9 16017 : 果然发现有没有杀掉的进程:再次运行:不会再报...原创 2019-07-23 12:11:23 · 17756 阅读 · 3 评论 -
2019TinyMind人民币面值及编码识别比赛代码开源
1 综述有幸参加了2019TinyMind人民币面值及编码识别比赛,比赛的具体背景和要求如下所示。1.1 比赛背景1.2 具体任务比赛一共分类两个任务,第一轮任务是训练AI,识别每张图片的面值,面值一共分为0.1,0.2,0.5,1,2,5,10,50,100,一共9种标签,单位为元。1.3 数据说明1.4 第一阶段代码说明目前本人仅仅参与了第...原创 2019-08-04 22:07:17 · 1694 阅读 · 0 评论 -
卷积神经网络中各层的计算
前言这篇文章会简单写一下卷积神经网络上参数的计算方法,然后计算各个常见神经网络的参数。一个是加强对网络结构的了解,另一方面对网络参数的量级有一个大概的认识,也可以当作备忘录,免得想知道的时候还要再算。参数计算方法全连接的参数计算就不说了,比较简单。首先,简单说一下卷积网络的参数计算。下图中是一个32x32x3的输入,然后用一个5x5x3的卷积对其中某个位置的计算,这里算的是一个点积,所以输出是一...原创 2018-07-10 10:39:37 · 5729 阅读 · 1 评论 -
卷积神经网络中参数如何计算
在刚刚接触CNN和caffe之后,也对CNN当中的各类layers做了简单的了解。但对于各个层具体是如何进行运算的,其实并不是特别了解。最近调完实验后,下一步就要进行调参和调网络的工作,所以就准备在这个时间深入地了解一下。主要针对conv层、全连接层、pooling层,另外稍带介绍了CNN中的激活函数Relu。文章主要参考了零基础入门深度学习(4)中的内容,并根据本人对于CNN的理解进行了部分修改...原创 2018-07-10 15:32:45 · 11579 阅读 · 2 评论 -
Caffe学习:命令行解析
caffe的运行提供三种接口:c++接口(命令行)、python接口和matlab接口。本文先对命令行进行解析,后续会依次介绍其它两个接口。caffe的c++主程序(caffe.cpp)放在根目录下的tools文件夹内, 当然还有一些其它的功能文件,如:convert_imageset.cpp, train_net.cpp, test_net.cpp等也放在这个文件夹内。经过编译后,这些文件都...原创 2018-07-31 16:13:23 · 177 阅读 · 0 评论 -
keras中Flatten()函数的用法
Flatten层的实现在Keras.layers.core.Flatten()类中。作用:Flatten层用来将输入“压平”,即把多维的输入一维化,常用在从卷积层到全连接层的过渡。Flatten不影响batch的大小。例子: from keras.models import Sequential from keras.layers.core import Flatten...原创 2018-08-31 15:04:03 · 61282 阅读 · 3 评论 -
卷积神经网络之感受野的计算
卷积神经网络感受野之计算公式 (pengfei.ma, pfm@mail.ustc.edu.cn, v1.0, 20180917...原创 2018-09-17 18:05:22 · 2756 阅读 · 2 评论 -
解决tensorflow报错ValueError: Variable conv1/weights already exists, disallowed
如图,在运行程序的时候出现下面的错误,则需要在代码的开头加一句tf.reset_default_graph()原创 2019-07-03 23:02:42 · 3982 阅读 · 1 评论 -
将一个文件夹中的非RGB格式的图片全部找出来
最近在做基于tensorflow目标检测API的目标识别,如果不能事先找出图片中的非RGB图片,则会报错,下面程序实现找出路径下图片中是否含有非RGB的图片from PIL import Imageimport ospath = 'D:\\AI\project\\Tensorflow object detection\\Tensorflow object detection API\\...原创 2019-07-17 14:53:19 · 667 阅读 · 0 评论 -
ImportError: cannot import name 'exporter' from 'object_detection' (unknown location)的解决办法
最近在做基于tensofflow目标检测API的项目时候,在进行到模型生成步骤的时候,执行:python export_inference_graph.py --input_type image_tensor --pipeline_config_path training/ssd_mobilenet_v1_coco.config --trained_checkpoint_prefix tra...原创 2019-07-20 17:36:23 · 13779 阅读 · 4 评论 -
深度学习中的激活函数
SigmoidSigmoid 非线性函数将输入映射到 $$ \left( 0,1\right) $$ 之间。它的数学公式为:$$\sigma \left( x\right) =\dfrac {1} {1+e^{-x}}$$。历史上, sigmoid 函数曾非常常用,然而现在它已经不太受欢迎,实际很少使用了,因为它主要有两个缺点:1. 函数饱和使梯度消失sigmoid 神经元在值为 0 或 1 的时...原创 2018-07-09 16:52:11 · 509 阅读 · 0 评论