keras中Flatten()函数的用法

博客介绍了Keras中Flatten层的实现,其位于Keras.layers.core.Flatten()类。该层作用是将多维输入一维化,常用于卷积层到全连接层过渡,且不影响batch大小,还提到将通过可视化神经网络来助于理解其作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Flatten层的实现在Keras.layers.core.Flatten()类中。

作用:

Flatten层用来将输入“压平”,即把多维的输入一维化,常用在从卷积层到全连接层的过渡。Flatten不影响batch的大小。

例子:

  1. from keras.models import Sequential

  2. from keras.layers.core import Flatten

  3. from keras.layers.convolutional import Convolution2D

  4. from keras.utils.vis_utils import plot_model

  5.  
  6.  
  7. model = Sequential()

  8. model.add(Convolution2D(64,3,3,border_mode="same",input_shape=(3,32,32)))

  9. # now:model.output_shape==(None,64,32,32)

  10.  
  11. model.add(Flatten())

  12. # now: model.output_shape==(None,65536)

  13.  
  14. plot_model(model, to_file='Flatten.png', show_shapes=True)

为了更好的理解Flatten层作用,我把这个神经网络进行可视化如下图:

Keras中,当我们需要进行多分类任务时,可以使用`categorical_crossentropy`作为损失函数。`categorical_crossentropy`是一种常用的多分类损失函数,它适用于类别排他(即每个样本只属于一类)的分类任务。 使用`categorical_crossentropy`时,我们需要将标签进行One-Hot编码,即将一个标签转换成一个向量,向量的长度等于类别的数量,向量中只有一个元素为1,其余元素为0。例如,对于一个3分类问题,如果一个样本的真实标签是2,则对应的One-Hot编码为[0, 0, 1]。 下面是在Keras中使用`categorical_crossentropy`的示例代码: ```python from keras.models import Sequential from keras.layers import Dense from keras.losses import categorical_crossentropy from keras.optimizers import SGD import numpy as np # 构建模型 model = Sequential() model.add(Dense(units=64, activation='relu', input_dim=100)) model.add(Dense(units=10, activation='softmax')) # 编译模型 model.compile(loss=categorical_crossentropy, optimizer=SGD(lr=0.01), metrics=['accuracy']) # 准备数据 x_train = np.random.random((1000, 100)) y_train = np.random.randint(10, size=(1000, 1)) y_train = np.eye(10)[y_train.flatten()] # 训练模型 model.fit(x_train, y_train, epochs=5, batch_size=32) ``` 在上面的代码中,我们首先构建了一个简单的神经网络模型,包括一个输入层、一个隐藏层和一个输出层。输出层使用`softmax`激活函数,可以将输出转换成概率分布。然后,我们使用`categorical_crossentropy`作为损失函数,使用随机梯度下降(SGD)优化器进行优化。最后,我们准备了一些随机的训练数据,并训练了模型5个epochs。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鸡啄米的时光机

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值