keras中Flatten()函数的用法

Flatten层的实现在Keras.layers.core.Flatten()类中。

作用:

Flatten层用来将输入“压平”,即把多维的输入一维化,常用在从卷积层到全连接层的过渡。Flatten不影响batch的大小。

例子:

  1. from keras.models import Sequential

  2. from keras.layers.core import Flatten

  3. from keras.layers.convolutional import Convolution2D

  4. from keras.utils.vis_utils import plot_model

  5.  
  6.  
  7. model = Sequential()

  8. model.add(Convolution2D(64,3,3,border_mode="same",input_shape=(3,32,32)))

  9. # now:model.output_shape==(None,64,32,32)

  10.  
  11. model.add(Flatten())

  12. # now: model.output_shape==(None,65536)

  13.  
  14. plot_model(model, to_file='Flatten.png', show_shapes=True)

为了更好的理解Flatten层作用,我把这个神经网络进行可视化如下图:

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鸡啄米的时光机

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值