深度学习推荐系统-ESMM模型

背景

文章基于 Multi-Task Learning 的思路,提出一种新的CVR预估模型——ESMM,有效解决了真实场景中CVR预估面临的数据稀疏以及样本选择偏差这两个关键问题。 实践出真知,论文一点也不花里胡哨,只有4页,据传被 SIGIR’2018 高分录用。

动机

cvr预估存在2个关键的问题:
样本选择偏差

Sample Selection Bias (SSB):

对于cvr问题,存在训练样本和预测样本偏差问题。训练时使用点击->转化数据作为训练样本,预测时输入曝光,输出转化概率,

Data Sparsity (DS):

当前主要的训练样本都是点击->转化数据,样本量十分稀疏

解决方案

模型结构

模型结构图

全样本空间建模:解决BBS问题

公式1:
在这里插入图片描述
公式2: 在这里插入图片描述
已知公式1的条件概率表达式,那么公式2的条件概率就很容易得出,公式2的等号左边即为我们的目标pcvr,我们可以通过等号右边的表达式算出,发现等号右边有一个优点就是样本都是曝光数据,这样很好的解决了训练样本偏差问题

但同时又暴露一个新问题:公式2的分子、分母均是一个十分小的数,如果分开建模会存在相除后的值可能大于1,这不符合cvr的物理意义。

如何解决直接相除不符合cvr的物理意义问题?

使用多目标建模,共享embeding。
模型结构如上图。先看上半部分,两边各有一个DNN塔,分别输出pcvr和pctr,两个结果相乘,就得到了pctcvr。再看下半部分,embedding层采用了共享方式,首先这样做可以大大减少网络的参数量,减少训练成本,更深层次的原因则与梯度回传方式有关。在推荐问题中,正样本的价值是远高于负样本的,因为正样本是带有用户明确的兴趣偏好,是显性的,而负样本则相对较为隐性,不能简单认为用户没有点击一个物品就代表他对这个物品不感兴趣。现在我们只看正样本的梯度回传路径,pctcvr预估的正样本会同时影响左右2部分,而pctr预估的正样本只从右边往下回传。假如底部的embedding层不共享,那左边依然会面临正样本稀疏的问题,权值的训练就会不充分,表达能力就会有欠缺。

效果

在这里插入图片描述

一句话总结

通过共享embeding+多目标框架,充分利用大量训练样本,完美解决ds+bbs问题,最终达到当时sota效果。

不足

当2个任务本身存在冲突时,模型会很难收敛

相关链接:

paper
code
参考链接:https://zhuanlan.zhihu.com/p/427796311

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值