深度学习推荐系统-MMoE模型

背景

随着大数据和人工智能技术的飞速发展,多任务学习(Multi-Task Learning, MTL)在机器学习领域的应用日益广泛。多任务学习旨在通过同时学习多个相关任务来提高模型的泛化能力,减少过拟合,并加速模型的收敛速度。在众多多任务学习模型中,MMoE(Multi-gate Mixture-of-Experts)模型因其出色的性能和灵活性而备受关注。本文将详细解析MMoE模型的理论知识,并通过实例展示其在多任务学习中的实际应用

动机

当前(2018年)主流多任务学习模型主流框架(Shared-Bottom model)是底层共享参数,上层加入各类任务进行模型训练,对于多个task间关联度不高的任务往往会“互相打架”,不容易收敛;
当前主流多任务学习缺少个性化与共享性的有效结合。

解决方案

模型结构

在这里插入图片描述

模型介绍

共享底层网络:负责提取输入数据的通用特征,这些特征将作为后续门控网络和专家网络的输入

专家网络:一组公用的网络,每个网络都是由全连接层构成,用于从不同维度捕捉输入向量的信息;

门控网络:为每个任务学习一个门控网络,用于决定哪些专家网络对当前任务更为重要。门控网络的输出是一个权重向量,用于对专家网络的输出进行加权。

特定任务网络:专家网络输出乘以各自任务门控网络的权重再进行求和,后分别进入不同任务网络,进行各自的任务学习

模型原理

MMoE模型的核心原理在于通过门控网络为每个任务选择相应的专家网络。在训练过程中,门控网络会学习为每个任务分配不同的权重。同时,专家网络本身是共享的,多个任务可以共享一些通用特征,从而提高模型的泛化能力。

模型优势

灵活性:MMoE模型允许为每个任务学习特定的专家网络,从而实现了任务的个性化和共享性。这种灵活性使得MMoE模型能够很好地适应不同场景下的多任务学习问题。

性能优越:由于MMoE模型能够同时学习多个相关任务,因此可以在一定程度上提高模型的泛化能力,减少过拟合,并加速模型的收敛速度。

可扩展性:MMoE模型可以轻松地扩展到更多的任务和数据集上,只需添加相应的门控网络和专家网络即可

实践应用

假设我们有一个电商平台,需要同时预测用户的点击率和购买率。这是一个典型的多任务学习问题,因为点击率和购买率之间存在相关性,但又有各自的特点。我们可以使用MMoE模型来解决这个问题。

首先,我们需要构建共享底层网络来提取用户的通用特征,如浏览历史、购买历史等。然后,我们为每个任务(点击率和购买率)分别构建门控网络和专家网络。门控网络将学习为每个任务分配不同的权重,以便选择最适合该任务的专家网络。最后,我们将共享底层网络的输出作为门控网络和专家网络的输入,得到每个任务的预测结果。

通过实验验证,我们发现使用MMoE模型进行多任务学习可以显著提高预测准确率,并且相比于单任务学习模型,MMoE模型在收敛速度和泛化能力上也有明显的优势。

模型效果

在这里插入图片描述

一句话总结

针对多目标任务,通过专家网络学习多任务间的共性,通过加入门控网络学习单个任务的个性化;专家网络和门控网络的有效配合,从而实现了任务的个性化和共享性。

不足

相关链接

参考文献:多任务学习之MMoE理论详解与实践
paper

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值