ESMM模型笔记

ESMM模型笔记

背景

ESMM模型是阿里算法团队关于CVR预估提出的新模型,思路很新颖,对于CVR预估有很强的参考意义。而且里面的多个目标其实可以根据实际业务进行替换,可以快速尝试应用,想象力空间很大。

CVR任务面临的典型挑战:

1. 样本选择偏差(SSB)
传统的CVR训练用的是点击数据,用户点击后未转化为负样本,点击后转化为正样本。但点击事件仅仅是整个曝光空间的一个子集,数据分布是不一致的,模型的泛化能力就会受到影响。
在这里插入图片描述
2. 数据稀疏问题(DS)
点击率一般是比较低的,曝光量是远远大于点击量的,以点击数据作为CVR的训练数据,会导致数据非常稀疏

3. 延迟反馈
用户点击之后可能过几天才转化,对于CVR模型,负样本可能是假性负样本,这对模型的学习造成困扰

ESMM模型

用户的点击率高,转化率不一定高。在很多场景都是这样,不同群里的点击率和转化率差异很大。传统的CVR模型中,是在用户点击的前提下,预估用户的转化情况(pCTCVR)。但是实际上需要预测的是如果用户点击后,用户转化的概率(pCVR)。因为用户如果点击了,是否转化我们是不知道的。

点击后转化概率,点击率与转化率关系如下

在这里插入图片描述
其中z表示转化,y表示点击

ESMM模型采用CTCVR和CTR来学习CVR,模型结构如下图。

  • 两个任务共享Embedding层,这样能充分利用所有数据,缓解单独训练CVR的数据稀疏问题

  • CTR和CVR是乘法的形式,数值会比较稳定。其实单独训练一个CTR和CTCVR模型,然后用除法的形式得到CVR也可以,但是除法存在数值不稳定的情况
    在这里插入图片描述
    损失函数
    使用交叉熵损失函数
    在这里插入图片描述
    对比

  • 单CVR任务作为baseline

  • AMAN:从未点击样本中随机抽样作为负例加入训练

  • OVERSAMPLING——对点击后的转化正样本过采样

  • UNBIAS——使用rejection sampling方式采样样本

  • DIVISION——训练CTR和CTCVR两个任务,除法运算得到pCVR

  • ESMM-NS——ESMM结构两个任务不共享Embedding
    在这里插入图片描述

小结
ESMM使用CTR和CTCVR两个任务的联合训练来解决CVR问题,这里能根据实际业务需要变换label,只要两个label有类似的联系,应该都有一定的提升。

另外这里的网络结构其实可以换成更其他更复杂的网络结构,可以进一步扩展

参考

1. 镶嵌在互联网技术上的明珠:漫谈深度学习时代点击率预估技术进展
2. Entire Space Multi-Task Model: An Effective Approach for
Estimating Post-Click Conversion Rate

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值