【Comet OJ - Contest #11 F arewell】【FMT】

题意

给一个 n n n个点 m m m条边的无向图,每条边 ( u , v ) (u,v) (u,v)有从 u u u指向 v v v,从 v v v指向 u u u和消失三种情况,概率均为 1 3 \frac{1}{3} 31。问该图为DAG的概率是多少。
n ≤ 20 n\le20 n20

分析

F S F_S FS表示集合 S S S中的点构成DAG的方案, E S E_S ES表示集合 S S S中的边数, E S , T E_{S,T} ES,T表示集合 S S S T T T之间的边数。
容斥一下,枚举入度为 0 0 0的点集 T T T可以得到 F S = ∑ T ∈ S , T ≠ ∅ ( − 1 ) ∣ T ∣ − 1 F T 2 E T , S − T F_S=\sum_{T\in S,T\not=\empty}(-1)^{|T|-1}F_T2^{E_{T,S-T}} FS=TS,T=(1)T1FT2ET,ST
其中 E T , S − T = E S − E T − E S − T E_{T,S-T}=E_S-E_T-E_{S-T} ET,ST=ESETEST,所以 F S 2 E S = ∑ T ∈ S , T ≠ ∅ ( − 1 ) ∣ T ∣ − 1 2 E T ∗ F T 2 E S − T \frac{F_S}{2^{E_S}}=\sum_{T\in S,T\not=\empty}\frac{(-1)^{|T|-1}}{2^{E_T}}*\frac{F_T}{2^{E_{S-T}}} 2ESFS=TS,T=2ET(1)T12ESTFT
直接做子集卷积即可。
时间复杂度 O ( n 2 2 n ) O(n^22^n) O(n22n)

代码

#include<bits/stdc++.h>

typedef long long LL;

const int N=25;
const int M=1048580;
const int MOD=998244353;

int n,m,cnt[M],tot[M],bin[N*N],inv[N*N],f[N][M],g[N][M],ma[N];

int lg(int x) {return std::lower_bound(bin,bin+n,x)-bin;}

int ksm(int x,int y)
{
	int ans=1;
	while (y)
	{
		if (y&1) ans=(LL)ans*x%MOD;
		x=(LL)x*x%MOD;y>>=1;
	}
	return ans;
}

void fwt(int *a,int f)
{
	if (f==1)
	{
		for (int i=0;i<n;i++)
			for (int j=0;j<bin[n];j++)
				if (j&bin[i]) (a[j]+=a[j^bin[i]])%=MOD;
	}
	else
	{
		for (int i=n-1;i>=0;i--)
			for (int j=0;j<bin[n];j++)
				if (j&bin[i]) (a[j]+=MOD-a[j^bin[i]])%=MOD;
	}
}

int main()
{
	scanf("%d%d",&n,&m);
	bin[0]=inv[0]=1;
	for (int i=1;i<=std::max(n,m);i++) bin[i]=bin[i-1]*2%MOD,inv[i]=ksm(bin[i],MOD-2);
	for (int i=1;i<=m;i++)
	{
		int x,y;scanf("%d%d",&x,&y);
		ma[x]|=bin[y-1];ma[y]|=bin[x-1];
	}
	for (int i=1;i<bin[n];i++) cnt[i]=cnt[i-(i&(-i))]+1,tot[i]=tot[i-(i&(-i))]+cnt[ma[lg(i&(-i))+1]&i];
	for (int i=0;i<bin[n];i++) g[cnt[i]][i]=(cnt[i]&1)?inv[tot[i]]:MOD-inv[tot[i]];
	for (int i=0;i<=n;i++) fwt(g[i],1);
	f[0][0]=1;
	fwt(f[0],1);
	for (int i=0;i<=n;i++)
	{
		for (int j=1;j<=n-i;j++)
			for (int k=0;k<bin[n];k++)
				(f[i+j][k]+=(LL)f[i][k]*g[j][k]%MOD)%=MOD;
	}
	fwt(f[n],-1);
	printf("%d\n",(LL)f[n][bin[n]-1]*ksm(2*ksm(3,MOD-2),m)%MOD);
	return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值