题意
给一个
n
n
n个点
m
m
m条边的无向图,每条边
(
u
,
v
)
(u,v)
(u,v)有从
u
u
u指向
v
v
v,从
v
v
v指向
u
u
u和消失三种情况,概率均为
1
3
\frac{1}{3}
31。问该图为DAG的概率是多少。
n
≤
20
n\le20
n≤20
分析
设
F
S
F_S
FS表示集合
S
S
S中的点构成DAG的方案,
E
S
E_S
ES表示集合
S
S
S中的边数,
E
S
,
T
E_{S,T}
ES,T表示集合
S
S
S和
T
T
T之间的边数。
容斥一下,枚举入度为
0
0
0的点集
T
T
T可以得到
F
S
=
∑
T
∈
S
,
T
≠
∅
(
−
1
)
∣
T
∣
−
1
F
T
2
E
T
,
S
−
T
F_S=\sum_{T\in S,T\not=\empty}(-1)^{|T|-1}F_T2^{E_{T,S-T}}
FS=T∈S,T=∅∑(−1)∣T∣−1FT2ET,S−T
其中
E
T
,
S
−
T
=
E
S
−
E
T
−
E
S
−
T
E_{T,S-T}=E_S-E_T-E_{S-T}
ET,S−T=ES−ET−ES−T,所以
F
S
2
E
S
=
∑
T
∈
S
,
T
≠
∅
(
−
1
)
∣
T
∣
−
1
2
E
T
∗
F
T
2
E
S
−
T
\frac{F_S}{2^{E_S}}=\sum_{T\in S,T\not=\empty}\frac{(-1)^{|T|-1}}{2^{E_T}}*\frac{F_T}{2^{E_{S-T}}}
2ESFS=T∈S,T=∅∑2ET(−1)∣T∣−1∗2ES−TFT
直接做子集卷积即可。
时间复杂度
O
(
n
2
2
n
)
O(n^22^n)
O(n22n)
代码
#include<bits/stdc++.h>
typedef long long LL;
const int N=25;
const int M=1048580;
const int MOD=998244353;
int n,m,cnt[M],tot[M],bin[N*N],inv[N*N],f[N][M],g[N][M],ma[N];
int lg(int x) {return std::lower_bound(bin,bin+n,x)-bin;}
int ksm(int x,int y)
{
int ans=1;
while (y)
{
if (y&1) ans=(LL)ans*x%MOD;
x=(LL)x*x%MOD;y>>=1;
}
return ans;
}
void fwt(int *a,int f)
{
if (f==1)
{
for (int i=0;i<n;i++)
for (int j=0;j<bin[n];j++)
if (j&bin[i]) (a[j]+=a[j^bin[i]])%=MOD;
}
else
{
for (int i=n-1;i>=0;i--)
for (int j=0;j<bin[n];j++)
if (j&bin[i]) (a[j]+=MOD-a[j^bin[i]])%=MOD;
}
}
int main()
{
scanf("%d%d",&n,&m);
bin[0]=inv[0]=1;
for (int i=1;i<=std::max(n,m);i++) bin[i]=bin[i-1]*2%MOD,inv[i]=ksm(bin[i],MOD-2);
for (int i=1;i<=m;i++)
{
int x,y;scanf("%d%d",&x,&y);
ma[x]|=bin[y-1];ma[y]|=bin[x-1];
}
for (int i=1;i<bin[n];i++) cnt[i]=cnt[i-(i&(-i))]+1,tot[i]=tot[i-(i&(-i))]+cnt[ma[lg(i&(-i))+1]&i];
for (int i=0;i<bin[n];i++) g[cnt[i]][i]=(cnt[i]&1)?inv[tot[i]]:MOD-inv[tot[i]];
for (int i=0;i<=n;i++) fwt(g[i],1);
f[0][0]=1;
fwt(f[0],1);
for (int i=0;i<=n;i++)
{
for (int j=1;j<=n-i;j++)
for (int k=0;k<bin[n];k++)
(f[i+j][k]+=(LL)f[i][k]*g[j][k]%MOD)%=MOD;
}
fwt(f[n],-1);
printf("%d\n",(LL)f[n][bin[n]-1]*ksm(2*ksm(3,MOD-2),m)%MOD);
return 0;
}