【论文阅读】Optimal Advertising for Information Products

github博客文章链接

Abstract

这篇是发表在 EC21 上的文章。考虑的情形是有一个不可知的状态,买家能够选择一个行动,其收益取决于状态和行动。卖家知道真实的状态,想要将状态信息出售给买家。为了让买家愿意付钱购买,卖家可以先免费透露部分信息给买家,改变其对状态的估计,从而让其购买状态信息。买家和卖家都想最大化自己的收益。论文里讨论了卖家的最优机制设计问题,通过优化的角度,给出了特殊情形下问题的解法,同时证明了一般情形下该问题是 NP 难的。

由于论文里涉及到较多凸优化的知识,所以只读懂了一部分。希望等之后学了凸优化之后再来补坑。

Motivation

在生活中有很多这样的例子:例如电影院通过预告片让一些人对电影产生更大的兴趣。注意到虽然提前透露部分信息会让卖家拥有的私有信息量减少,却能让一些人对信息产品产生兴趣,因此来获得更高的收益。

跟传统模型的差别:贝叶斯说服(Bayesian persuasion)中,卖家只考虑买家采取的动作;该模型中卖家还需要考虑具体的收益,即买家付的钱。传统的商品拍卖中,透露信息并不会改变商品本身;该模型中,透露信息会减少卖家包含的私有信息量,即商品的品质。

Model

考虑状态 ω ∈ Ω = { 1 , ⋯   , n } \omega\in \Omega=\{1,\cdots,n\} ωΩ={ 1,,n},其服从概率分布 μ ( ω ) \mu(\omega) μ(ω),其中 μ \mu μ 是公有信息。具体状态只有卖家能看到,买家对状态的概率分布有一个自己的估计 θ ∈ Θ ⊆ Δ Ω \theta\in \Theta\subseteq \Delta\Omega θΘΔΩ。买家可以选择一个行动 a ∈ A a\in A aA。若选择了行动 a a a 且状态为 ω \omega ω,其收益为 u ( ω , a ) u(\omega,a) u(ω,a)

买家必须提前公布自己的广告机制。具体来说,广告机制的定义为

Definition 2.1 (Advertising Rule)

广告机制 ⟨ S , π , { p s : s ∈ S } ⟩ \langle S,\pi,\{p_s:s\in S\}\rangle S,π,{ ps:sS} 包括

  • 有限大小的信号集合 S S S
  • π : Ω → Δ S \pi:\Omega\to \Delta S π:ΩΔS 是信号发送机制,即观测到某一个状态后,以特定的概率分布去发送信号。
  • { p s : s ∈ S } \{p_s:s\in S\} { ps:sS} 表示收到信号 s s s 后,买家可以选择以 p s p_s ps 的价格购买具体状态信息。

那么卖家在观测到状态 ω \omega ω 后,先以 π ( ω , s ) \pi(\omega,s) π(ω,s) 的概率发送信号 s s s。买家可以选择不买具体的状态信息,也可以选择以 p s p_s ps 的价格购买。


注意到若买家对状态的估计是 θ = ( θ 1 , ⋯   , θ n ) \theta=(\theta_1,\cdots,\theta_n) θ=(θ1,,θn),那么在收到信号 s s s 后,其估计会变为
η s ( θ ) = ( θ 1 π ( 1 , s ) , ⋯   , θ n π ( n , s ) ) ∑ ω = 1 n θ ω π ( ω , s ) \eta^s(\theta)=\frac{(\theta_1\pi(1,s),\cdots,\theta_n\pi(n,s))}{\sum_{\omega=1}^n\theta_\omega\pi(\omega,s)} ηs(θ)=ω=1nθωπ(ω,s)(θ1π(1,s),,θnπ(n,s))
那么买家愿意为购买真实信息付的钱,不超过他知道真实状态 ω \omega ω 后的收益减去估计是 η s ( θ ) \eta^s(\theta) ηs(θ) 时的期望收益。具体来说:

Definition 2.2 (Cost of Uncertainty)

假设买家的收益函数为 u ( ω , a ) u(\omega,a) u(ω,a),估计为 η = ( η 1 , ⋯   , η n ) ∈ Δ Ω \eta=(\eta_1,\cdots,\eta_n)\in \Delta \Omega η=(η1,,ηn)ΔΩ,定义不确定花费为买家不知道真实状态带来的期望损失:
C ( η ) = E ω ∼ η [ max ⁡ a ∈ A u ( ω , a ) ] − max ⁡ a ∈ A E ω ∼ η [ u ( ω , a ) ] = ∑ ω = 1 n η ω max ⁡ a ∈ A u ( ω , a ) − max ⁡ a ∈ A ∑ ω = 1 n η ω u ( ω , a ) = min ⁡ a C a ( η ) \begin{aligned} C(\eta)&=E_{\omega\sim \eta}[\max_{a\in A}u(\omega,a)]-\max_{a\in A}E_{\omega\sim \eta}[u(\omega,a)]\\ &=\sum_{\omega=1}^n\eta_{\omega}\max_{a\in A}u(\omega,a)-\max_{a\in A}\sum_{\omega=1}^n\eta_{\omega}u(\omega,a)\\ &=\min_aC_a(\eta) \end{aligned} C(η)=Eωη[aAmaxu(ω,a)]aAmaxEωη[u(ω,a)]=ω=1nηωaAmaxu(ω,a)aAmaxω=1nηωu(ω,a)=aminCa(η)
其中 C a ( η ) = ∑ ω = 1 n η ω ( max ⁡ a ′ ∈ A u ( ω , a ′ ) − u ( ω , a ) ) C_a(\eta)=\sum_{\omega=1}^n\eta_\omega(\max_{a'\in A}u(\omega,a')-u(\omega,a)) Ca(η)=ω=1nηω(maxaAu(ω,a)u(ω,a)) 是关于 η \eta η 的线性函数,表示采取行动 a a a 后带来的损失。注意到 C ( η ) C(\eta) C(η) ∣ A ∣ |A| A 个线性函数的 min ⁡ \min min,那么 C ( η ) C(\eta) C(η) 是一个凹函数。


当买家收到信号 s s s 后,他愿意购买状态信息当且仅当 C ( η s ( θ ) ) ≥ p s C(\eta^s(\theta))\ge p_s C(ηs(θ))ps,即购买后能带来非负的收益。

我们假设卖家知道买家状态的概率分布 μ ( θ ∣ ω ) \mu(\theta|\omega) μ(θω),那么选择了广告机制 ⟨ S , π , { p s : s ∈ S } ⟩ \langle S,\pi,\{p_s:s\in S\}\rangle S,π,{ ps:sS} 后,其期望收益为
∑ ω ∈ Ω μ ( ω ) ∑ θ ∈ Θ μ ( θ ∣ ω ) ∑ s ∈ S π ( ω , s ) ⋅ p s ⋅ 1 ( C ( η 2 ( θ ) ) ≥ p s ) \sum_{\omega\in \Omega}\mu(\omega)\sum_{\theta\in \Theta}\mu(\theta|\omega)\sum_{s\in S}\pi(\omega,s)\cdot p_s\cdot 1(C(\eta^2(\theta))\ge p_s) ωΩμ(ω)θΘμ(θω)sSπ(ω,s)ps1(C(η2(θ))ps)
卖家的目标是找到广告机制来最大化自身期望收益。

Single Buyer Type

首先考虑买家的状态 θ \theta θ 是固定的情况。

Concave Closure Formulation

Definition 3.1 (Likelihood ratio)

若买家的估计为 θ ∈ Δ Ω \theta\in \Delta\Omega θΔΩ,定义其似然比为

R ( η ) = ∑ ω μ ω ⋅ η ω θ ω

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值