【论文阅读】Send Mixed Signals – Earn More, Work Less

github博客文章链接

Abstract

考虑多类型的单物品拍卖,且所有买家的价值已知,并假定使用二价拍卖。文章说明了混合信号策略比纯信号策略收益更高,给出了计算最优混合信号策略的线性规划,并将其变量数降至多项式级别,因此能在多项式时间内求解。同时证明了使用最优信号策略的收益对某个指标有很好的近似比。证明中利用了混合信号策略等价于多个可分割物品拍卖的性质。

Motivation

在信息不对称的情形下,即卖家拥有私有信息,为了最大化自己的收益,卖家通过信号的形式透露部分信息是很合理的方式。相较于纯信号策略,显然使用混合的信号策略效果不会更差。

Model

有一个物品和 n n n 个买家。物品有 m m m 种类型,服从概率分布 ( p 1 , ⋯   , p m ) (p_1,\cdots,p_m) (p1,,pm)。买家 i i i 对类型 j j j 的价值是 v i , j v_{i,j} vi,j,其中 v v v p p p 都是公有信息。卖家要预先提供一个信号策略 φ : [ m ] × N → [ 0 , 1 ] \varphi:[m]\times \mathbb{N}\to [0,1] φ:[m]×N[0,1] 并告知买家,其中 φ ( j , S ) \varphi(j,S) φ(j,S) 表示当卖家观测到物品类型为 j j j 时发送信号 S S S 的概率。后文中 S S S 也可以表示所有可能发送信号 S S S 的类型集合,即 { j : φ ( j , S ) > 0 } \{j:\varphi(j,S)>0\} {j:φ(j,S)>0}。令 S φ \mathcal{S}_\varphi Sφ 表示有效的信号集合,即 { S : ∃ j , φ ( j , S ) > 0 } \{S:\exist j,\varphi(j,S)>0\} {S:j,φ(j,S)>0}。默认使用二价拍卖。

纯信号策略是指卖家观测到物品类型 j j j 后,发送的信号固定,即 φ ( j , S ) ∈ { 0 , 1 } \varphi(j,S)\in\{0,1\} φ(j,S){0,1}。纯信号策略等价于对类型进行二次分类,并告知买家属于哪一个类。混合信号策略是指以某个概率分布发送信号。那么买家收到信号 S S S 的概率为 ∑ j p j φ ( j , S ) \sum_jp_j\varphi(j,S) jpjφ(j,S)。收到信号 S S S 后,物品类型为 j j j 的概率
Pr ⁡ [ j ∣ S ] = p j φ ( j , S ) ∑ j ′ p j ′ φ ( j ′ , S ) \Pr[j|S]=\frac{p_j\varphi(j,S)}{\sum_{j'}p_{j'}\varphi(j',S)} Pr[jS]=jpjφ(j,S)pjφ(j,S)
因此收到信号 S S S 后,买家 i i i 的期望收益变为
E [ v i ∣ S ] = ∑ j Pr ⁡ [ j ∣ S ] v i , j = ∑ j v i , j p j φ ( j , S ) ∑ j ′ p j ′ φ ( j ′ , S ) E[v_i|S]=\sum_j\Pr[j|S]v_{i,j}=\frac{\sum_jv_{i,j}p_j\varphi(j,S)}{\sum_{j'}p_{j'}\varphi(j',S)} E[viS]=jPr[jS]vi,j=jpjφ(j,S)jvi,jpjφ(j,S)
由于二价拍卖中,买家的最优策略为采取真实报价,因此收到信号 S S S 后,卖家的收益为
max ⁡ i 2 { E [ v i ∣ S ] } = max ⁡ i 2 { ∑ j v i , j p j φ ( j , S ) ∑ j p j φ ( j , S ) } \max_i2\{E[v_i|S]\}=\max_i2\left\{\frac{\sum_jv_{i,j}p_j\varphi(j,S)}{\sum_{j}p_{j}\varphi(j,S)}\right\} imax2{E[viS]}=imax2{jpjφ(j,S)jvi,jpjφ(j,S)}
我们想要找到 φ \varphi φ 来最大化卖家的总收益
∑ S ∈ S φ Pr ⁡ [ S ] max ⁡ i 2 { E [ v i ∣ S ] } = ∑ S ∈ S φ { ∑ j v i , j p j φ ( j , S ) } = ∑ S ∈ S φ { ∑ j ψ i , j φ ( j , S ) } \sum_{S\in\mathcal{S}_\varphi}\Pr[S]\max_i2\{E[v_i|S]\}=\sum_{S\in\mathcal{S}\varphi}\left\{\sum_jv_{i,j}p_j\varphi(j,S)\right\}=\sum_{S\in\mathcal{S}\varphi}\left\{\sum_j\psi_{i,j}\varphi(j,S)\right\} SSφPr[S]imax2{E[viS]}=SSφ{jvi,jpjφ(j,S)}=SSφ{jψi,jφ(j,S)}
其中 ψ i , j = v i , j p j \psi_{i,j}=v_{i,j}p_j ψi,j=vi,jpj

可分割多物品拍卖的等价模型

对于按照混合信号策略 φ \varphi φ 来发送信号,考虑如下等价模型:有 m m m 个物品和 n n n 个买家,物品是可分割的(例如蛋糕)。第 i i i 个买家对第 j j j 个物品的价值为 ψ i , j \psi_{i,j} ψi,j。对于任意 S ∈ S φ S\in \mathcal{S}_\varphi SSφ,将其看成包含了多个物品的混合,其中 S S S 包含了第 j j j 个物品的 φ j , S \varphi_{j,S} φj,S 比例。然后对每个混合 S S S 分别进行二价拍卖。

容易看出混合信号策略和多物品拍卖中的物品划分方案一一对应,且卖家的收益相同。因此计算最优混合信号策略等价于寻找多物品拍卖的最优划分方案。

混合信号策略收益大于纯信号策略

下面的构造可以说明:对任意偶数 k k k,存在一个有 n = k + 1 n=k+1 n=k+1 个买家和 m = k + 1 m=k+1 m=k+1 种物品类型的拍卖,使得混合信号策略的收益至少是纯信号策略收益的两倍。

将买家和信号均按照 0 , ⋯   , k 0,\cdots,k 0,,k 编号,所有物品类型等概率出现,价值函数为
v i , j = { m i = j = 0 1 i = j ≠ 0 0 o t h e r w i s e v_{i,j}=\begin{cases} m & i=j=0\\ 1 & i=j\neq 0\\ 0 & otherwise \end{cases} vi,j=m10i=j=0i=j=0otherwise
则最优的纯信号策略必然是将物品类型两两捆绑。因为若某个物品不捆绑,则其收益为 0 0 0;将 s s s 个物品捆绑后,其中每个物品收益为 1 / s 1/s 1/s。注意到 k k k 是偶数,那么有 k k + 1 \frac{k}{k+1} k+1k 的概率,卖家的收益是 1 / 2 1/2 1/2,即期望收益为 k 2 ( k + 1 ) \frac{k}{2(k+1)} 2(k+1)k

考虑如下混合信号策略:信号集合为 { 0 , j } j = 1 , ⋯   , k \{0,j\}_{j=1,\cdots,k} {0,j}j=1,,k。对于任意 j j j Pr ⁡ [ { 0 , j } ∣ type  0 ] = 1 k \Pr[\{0,j\}|\text{type }0]=\frac{1}{k} Pr[{0,j}type 0]=k1 并且 Pr ⁡ [ { 0 , j } ∣ type  j ] = 1 \Pr[\{0,j\}|\text{type }j]=1 Pr[{0,j}type j]=1。容易计算得到卖家对每个信号的收益都是 k k + 1 \frac{k}{k+1} k+1k

最优混合策略的计算

一些记号

对于信号 S S S,令 w 1 ( S ) w_1(S) w1(S) 表示在多个可分割物品拍卖中赢得了混合 S S S 的买家编号, w 2 ( S ) w_2(S) w2(S) 表示对 S S S 估价第二高的买家编号。具体来说:
w 1 ( S ) = arg ⁡ max ⁡ i { ∑ j ∈ S ψ i , j φ j , S } w_1(S)=\arg\max_i\{\sum_{j\in S}\psi_{i,j}\varphi_{j,S}\} w1(S)=argimax{jSψi,jφj,S}

w 2 ( S ) = arg ⁡ max ⁡ i 2 { ∑ j ∈ S ψ i , j φ j , S } w_2(S)=\arg\max_i2\{\sum_{j\in S}\psi_{i,j}\varphi_{j,S}\} w2(S)=argimax2{jSψi,jφj,S}

S S S 是单独的如果 ∣ S ∣ = 1 |S|=1 S=1。记 w 1 ( j ) = w 1 ( { j } ) , w 2 ( j ) = w 2 ( { j } ) w_1(j)=w_1(\{j\}),w_2(j)=w_2(\{j\}) w1(j)=w1({j}),w2(j)=w2({j})。令 d ( i ) d(i) d(i) 表示所有 i i i 估价最高的物品类型的集合,即 d ( i ) = { j : w 1 ( j ) = i } d(i)=\{j:w_1(j)=i\} d(i)={j:w1(j)=i}。记 r e v ( S ) rev(S) rev(S) 表示混合 S S S 的收益,即 r e v ( S ) = ∑ j ∈ S φ j , S ψ w 2 ( S ) , j rev(S)=\sum_{j\in S}\varphi_{j,S}\psi_{w_2(S),j} rev(S)=jSφj,Sψw2(S),j。同样令 r e v ( j ) = r e v ( { j } ) rev(j)=rev(\{j\}) rev(j)=rev({j})。卖家采取信号策略 φ \varphi φ 的收益为 r e v ( φ ) = ∑ S ∈ S φ r e v ( S ) rev(\varphi)=\sum_{S\in\mathcal{S}_{\varphi}}rev(S) rev(φ)=SSφrev(S)

最优混合信号策略的性质

注意到对于两个信号 S S S T T T,如果 w 1 ( S ) = w 1 ( T ) w_1(S)=w_1(T) w1(S)=w1(T) w 2 ( S ) = w 2 ( T ) w_2(S)=w_2(T) w2(S)=w2(T),那么把这两个信号合并成一个后,卖家的收益并不会发生改变。因此必然存在一种最优混合信号策略,使得使用信号的数量不超过 n ( n − 1 ) n(n-1) n(n1)

下面考虑更多的性质。

Definition 4.2

给定信号策略 φ \varphi φ 后,称信号 S S S 是可分如果存在划分 S = S 1 ∪ S 2 ∪ ⋯ ∪ S t S=S_1\cup S_2\cup\cdots\cup S_t S=S1S2St,使得 ∑ k = 1 t r e v ( S k ) ≥ r e v ( S ) \sum_{k=1}^trev(S_k)\ge rev(S) k=1trev(Sk)rev(S)。称 S S S 是单独可分的如果 ∑ j ∈ S r e v ( j ) ≥ r e v ( S ) \sum_{j\in S}rev(j)\ge rev(S) jSrev(j)rev(S)

Claim 4.3

S S S 是在最优混合信号策略中的一个单独不可分的信号,即 r e v ( S ) > ∑ j ∈ S φ j , S r e v ( j ) rev(S)>\sum_{j\in S}\varphi_{j,S}rev(j) rev(S)>jSφj,Srev(j)。那么 w 1 ( S ) w_1(S) w1(S) w 2 ( S ) w_2(S) w2(S) 在那些赢得了 S S S 中某个物品的买家集合中,即 { w 1 ( j ) : j ∈ S } \{w_1(j):j\in S\} {w1(j):jS}

证明 假设 w 1 ( S ) w_1(S) w1(S) 不属于 { w 1 ( j ) : j ∈ S } \{w_1(j):j\in S\} {w1(j):jS},那么对于任意 j ∈ S j\in S jS,对它的第二高的估价至少是 w 1 ( S ) w_1(S) w1(S) 对它的估价。因此
∑ j ∈ S φ j , S r e v ( j ) ≥ ∑ j ∈ S φ j , S ψ w 1 ( S ) , j ≥ ∑ j ∈ S φ j , S ψ w 2 ( S ) , j = r e v ( S ) \sum_{j\in S}\varphi_{j,S}rev(j)\ge\sum_{j\in S}\varphi_{j,S}\psi_{w_1(S),j}\ge\sum_{j\in S}\varphi_{j,S}\psi_{w_2(S),j}=rev(S) jSφj,Srev(j)jSφj,Sψw1(S),jjSφj,Sψw2(S),j=rev(S)
矛盾。同理可证 w 2 ( S ) w_2(S) w2(S) 也满足。

Corollary 4.4

对于信号 S S S,若 ∣ { w 1 ( j ) : j ∈ S } ∣ = 1 |\{w_1(j):j\in S\}|=1 {w1(j):jS}=1,那么 S S S 是单独可分的。


那么不可分的信号 S S S 满足 { w 1 ( s ) : j ∈ S } \{w_1(s):j\in S\} {w1(s):jS} 大小至少为 2 2 2。接下来再证明不存在不可分的信号 S S S 满足 ∣ { w 1 ( j ) : j ∈ S } ∣ ≥ 3 |\{w_1(j):j\in S\}|\ge 3 {w1(j):jS}3

Claim 4.5

不存在不可分的信号 S S S 满足 ∣ { w 1 ( j ) : j ∈ S } ∣ ≥ 3 |\{w_1(j):j\in S\}|\ge 3 {w1(j):jS}3

证明 反证。不妨设 1 = w 1 ( S ) , 2 = w 2 ( S ) 1=w_1(S),2=w_2(S) 1=w1(S),2=w2(S),可知 1 , 2 ∈ { w 1 ( j ) : j ∈ S } 1,2\in \{w_1(j):j\in S\} 1,2{w1(j):jS},且 r e v ( S ) = ∑ j ∈ S ψ 2 , j φ ( j , S ) rev(S)=\sum_{j\in S}\psi_{2,j}\varphi(j,S) rev(S)=jSψ2,jφ(j,S)。往证 S S S 是可分的。

S 1 = S ∩ d ( 1 ) , S 2 = S ∩ d ( 2 ) S_1=S\cap d(1),S_2=S\cap d(2) S1=Sd(1),S2=Sd(2)。由假设可知 S 1 ∪ S 2 ≠ S S_1\cup S_2\neq S S1S2=S。将 S S S 划分成 ( S 1 ∪ S 2 ) (S_1\cup S_2) (S1S2) 以及 ∣ S \ ( S 1 ∪ S 2 ) ∣ |S\backslash (S_1\cup S_2)| S\(S1S2) 个单独的信号,总共是 ∣ S \ ( S 1 ∪ S 2 ) ∣ + 1 |S\backslash (S_1\cup S_2)|+1 S\(S1S2)+1 个信号。

首先考虑那些单独的信号带来的收益。由于买家 1 1 1 和买家 2 2 2 对这些物品的估价都不是最高的,那么这些信号的收益至少是买家 1 1 1 或买家 2 2 2 对这些信号的估价之和,即
∑ j ≠ S 1 ∪ S 2 r e v ( j ) ≥ max ⁡ { ∑ j ∈ S \ ( S 1 ∪ S 2 ) φ j , S ψ 1 , j , ∑ j ∈ S \ ( S 1 ∪ S 2 ) φ j , S ψ 2 , j } \sum_{j\neq S_1\cup S_2}rev(j)\ge\max\{\sum_{j\in S\backslash (S_1\cup S_2)}\varphi_{j,S}\psi_{1,j},\sum_{j\in S\backslash (S_1\cup S_2)}\varphi_{j,S}\psi_{2,j}\} j=S1S2rev(j)max{jS\(S1S2)φj,Sψ1,j,jS\(S1S2)φj,Sψ2,j}
对于 S 1 ∪ S 2 S_1\cup S_2 S1S2 的信号收益,买家 1 1 1 2 2 2 中至少有一人对该信号的估价不是最大的。无论是哪种,结合上面的不等式都可以得到,进行上述划分后,卖家的收益不会变得更低。


结合上面两个 Claim,我们有如下推论:

Corollary 4.6

S S S 是不可分的信号,那么 { w 1 ( j ) : j ∈ S } = { w 1 ( S ) , w 2 ( S ) } \{w_1(j):j\in S\}=\{w_1(S),w_2(S)\} {w1(j):jS}={w1(S),w2(S)}。换句话说, s u p p ( S ) ⊆ d ( w 1 ( S ) ) ∪ d ( w 2 ( S ) ) supp(S)\subseteq d(w_1(S))\cup d(w_2(S)) supp(S)d(w1(S))d(w2(S))

Observation 4.7

存在一个最优混合信号策略,使得对于任意非单独的信号 S S S w 1 ( S ) w_1(S) w1(S) w 2 ( S ) w_2(S) w2(S) S S S 的估价是相等的。

证明 假设对于信号 S S S w 1 ( S ) w_1(S) w1(S) S S S 的估价大于 w 2 ( S ) w_2(S) w2(S) S S S 的估价。令 S 1 = S ∪ d ( 1 ) , S 2 = S ∪ d ( 2 ) S_1=S\cup d(1),S_2=S\cup d(2) S1=Sd(1),S2=Sd(2)。由之前的结论可知 S = S 1 ∪ S 2 S=S_1\cup S_2 S=S1S2 S 1 S_1 S1 S 2 S_2 S2 均非空。令
g = ∑ j ∈ S 2 φ j , S ( ψ 2 , j − ψ 1 , j ) ∑ j ∈ S 1 φ j , S ( ψ 1 , j − ψ 2 , j ) g=\frac{\sum_{j\in S_2}\varphi_{j,S}(\psi_{2,j}-\psi_{1,j})}{\sum_{j\in S_1}\varphi_{j,S}(\psi_{1,j}-\psi_{2,j})} g=jS1φj,S(ψ1,jψ2,j)jS2φj,S(ψ2,jψ1,j)
由假设
∑ j ∈ S φ ( j , S ) ψ 1 , j > ∑ j ∈ S φ ( j , S ) ψ 2 , j \sum_{j\in S}\varphi(j,S)\psi_{1,j}>\sum_{j\in S}\varphi(j,S)\psi_{2,j} jSφ(j,S)ψ1,j>jSφ(j,S)ψ2,j
可知 g < 1 g<1 g<1。构造新信号策略 φ ′ \varphi' φ 如下:对于 j ∈ S 1 j\in S_1 jS1,降低观测到 j j j 后发送 S S S 的概率: φ ′ ( j , S ) = g ⋅ φ j , S \varphi'(j,S)=g\cdot \varphi_{j,S} φ(j,S)=gφj,S;相应地则增加发送信号 { j } \{j\} {j} 的概率: φ ′ ( j , { j } ) = φ j , { j } + ( 1 − g ) ⋅ φ j , S \varphi'(j,\{j\})=\varphi_{j,\{j\}}+(1-g)\cdot\varphi_{j,S} φ(j,{j})=φj,{j}+(1g)φj,S。注意到在 φ ′ \varphi' φ 中,买家 1 1 1 和买家 2 2 2 S S S 的估价分别为
g ∑ j ∈ S 1 φ ( j , S ) ψ 1 , j + ∑ j ∈ S 2 φ ( j , S ) ψ 1 , j , g ∑ j ∈ S 1 φ ( j , S ) ψ 2 , j + ∑ j ∈ S 2 φ ( j , S ) ψ 2 , j g\sum_{j\in S_1}\varphi(j,S)\psi_{1,j}+\sum_{j\in S_2}\varphi(j,S)\psi_{1,j},\quad g\sum_{j\in S_1}\varphi(j,S)\psi_{2,j}+\sum_{j\in S_2}\varphi(j,S)\psi_{2,j} gjS1φ(j,S)ψ1,j+jS2φ(j,S)ψ1,j,gjS1φ(j,S)ψ2,j+jS2φ(j,S)ψ2,j
由相减为 0 0 0 可知买家 1 1 1 2 2 2 S S S 的估价相等

再证卖家在 φ ′ \varphi' φ 下的收益不会降低:信号 { j } \{j\} {j} 的收益改变量为
( 1 − g ) φ j , S r e v ( j ) = ( 1 − g ) φ j , S ψ 1 , j ≥ ( 1 − g ) φ j , S ψ 2 , j (1-g)\varphi_{j,S}rev(j)=(1-g)\varphi_{j,S}\psi_{1,j}\ge(1-g)\varphi_{j,S}\psi_{2,j} (1g)φj,Srev(j)=(1g)φj,Sψ1,j(1g)φj,Sψ2,j
信号 S S S 的收益至少是买家 1 1 1 和买家 2 2 2 S S S 的估价取 min ⁡ \min min。可知卖家的收益并不会降低。

线性规划求解最优混合信号策略

因此可以用如下线性规划求解最优混合信号策略:
max ⁡ ∑ j x j ψ w 2 ( j ) , j + ∑ i 1 ∑ i 2 < i 1 ∑ j ∈ d ( i 1 ) ∪ d ( i 2 ) y j ( i 1 , i 2 ) ψ i 2 , j \max \sum_jx_j\psi_{w_2(j),j}+\sum_{i_1}\sum_{i_2<i_1}\sum_{j\in d(i_1)\cup d(i_2)}y_j(i_1,i_2)\psi_{i_2,j} maxjxjψw2(j),j+i1i2<i1jd(i1)d(i2)yj(i1,i2)ψi2,j
限制为
∀ i 1 , ∀ i 2 < i 1 ∑ j ∈ d ( i 1 ) ∪ d ( i 2 ) y j ( i 1 , i 2 ) ψ i 1 , j ≥ ∑ j ∈ d ( i 1 ) ∪ d ( i 2 ) y j ( i 1 , i 2 ) ψ i 2 , j ∀ i 1 , ∀ i 2 < i 1 , and  i ≠ i 1 , i 2 ∑ j ∈ d ( i 1 ) ∪ d ( i 2 ) y j ( i 1 , i 2 ) ψ i 1 , j ≥ ∑ j ∈ d ( i 1 ) ∪ d ( i 2 ) y j ( i 1 , i 2 ) ψ i , j ∑ j ∈ d ( i 1 ) ∪ d ( i 2 ) y j ( i 1 , i 2 ) ψ i 2 , j ≥ ∑ j ∈ d ( i 1 ) ∪ d ( i 2 ) y j ( i 1 , i 2 ) ψ i , j ∀ j x j + ∑ i 1 ∑ i 2 < i 1 [ j ∈ d ( i 1 ) ∪ d ( i 2 ) ] y j ( i 1 . i 2 ) ≤ 1 ∀ j , ∀ i 1 , ∀ i 2 < i 1 x j ≥ 0 , y j ( i 1 , i 2 ) ≥ 0 \begin{aligned} &\forall i_1,\forall i_2<i_1 & \sum_{j\in d(i_1)\cup d(i_2)}y_j(i_1,i_2)\psi_{i_1,j}\ge\sum_{j\in d(i_1)\cup d(i_2)}y_j(i_1,i_2)\psi_{i_2,j}\\ & \forall i_1,\forall i_2<i_1\text{, and }i\neq i_1,i_2 & \sum_{j\in d(i_1)\cup d(i_2)}y_j(i_1,i_2)\psi_{i_1,j}\ge\sum_{j\in d(i_1)\cup d(i_2)}y_j(i_1,i_2)\psi_{i,j}\\ & & \sum_{j\in d(i_1)\cup d(i_2)}y_j(i_1,i_2)\psi_{i_2,j}\ge\sum_{j\in d(i_1)\cup d(i_2)}y_j(i_1,i_2)\psi_{i,j}\\ & \forall j & x_j+\sum_{i_1}\sum_{i_2<i_1}[j \in d(i_1)\cup d(i_2)]y_j(i_1.i_2)\le 1\\ & \forall j,\forall i_1,\forall i_2<i_1 & x_j\ge 0,\quad y_j(i_1,i_2)\ge 0 \end{aligned} i1,i2<i1i1,i2<i1, and i=i1,i2jj,i1,i2<i1jd(i1)d(i2)yj(i1,i2)ψi1,jjd(i1)d(i2)yj(i1,i2)ψi2,jjd(i1)d(i2)yj(i1,i2)ψi1,jjd(i1)d(i2)yj(i1,i2)ψi,jjd(i1)d(i2)yj(i1,i2)ψi2,jjd(i1)d(i2)yj(i1,i2)ψi,jxj+i1i2<i1[jd(i1)d(i2)]yj(i1.i2)1xj0,yj(i1,i2)0
其中 y j ( i 1 , i 2 ) y_j(i_1,i_2) yj(i1,i2) 表示 φ ( j , S ) \varphi(j,S) φ(j,S),其中 w 1 ( S ) = i 1 , w 2 ( S ) = i 2 w_1(S)=i_1,w_2(S)=i_2 w1(S)=i1,w2(S)=i2 x j x_j xj 表示 φ ( j , { j } ) \varphi(j,\{j\}) φ(j,{j})。只需要考虑 i 2 < i 1 i_2<i_1 i2<i1 是因为存在最优策略,满足 i 2 i_2 i2 i 1 i_1 i1 S S S 的估价相等。

最优混合信号策略收益的近似

文章中考虑了这样一个 benchmark:
B = min ⁡ i ′ ( ∑ j max ⁡ i ≠ i ′ ψ i , j ) \mathcal{B}=\min_{i'}\left(\sum_j\max_{i\neq i'}\psi_{i,j}\right) B=imin(ji=imaxψi,j)
并证明了最优策略的收益至少是 B / 2 \mathcal{B}/2 B/2。由于证明是没什么意思且比较复杂,这里就不赘述了。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值